To evaluate the quality of clone detection tools, we should know how many clones the tool misses. Hence we need to have the standard code-clone reference corpus for a carefully chosen set of sample source codes. The reference corpus available so far has been built by manually collecting clones from the results of various existing tools. This paper presents a tree-pattern-based clone detection tool that can be used for automatic generation of reference corpus. Our tool is compared with CloneDR for precision and Bellon's reference corpus for recall. Our tool finds no false positives and 2 to 3 times more clones than CloneDR. Compared to Bellon's reference corpus, our tools shows the 93%-to-100% recall rate and detects far more clones.
This paper presents a tree-pattern based code-clone detector as CCR(Code Clone Ransacker) that finds all clusterd dulpicate pattern by comparing all pair of subtrees in the programs. The pattern included in its entirely in another pattern is ignored since only the largest duplicate patterns are interesed. Evaluation of CCR is high precision and recall. The previous tree-pattern based code-clone detectors are known to have good precision and recall because of comparing program structure. CCR is still high precision and the maximum 5 times higher recall than Asta and about 1.9 times than CloneDigger. The tool also include the majority of Bellon's reference corpus.
Tools for detecting cross-language clones usually compare abstract-syntax-tree representations of source code, which lacks scalability. In order to compare large source code to a practical level, we need a similarity checking technique that works on a token level basis. In this paper, we define common tokens that represent all tokens commonly used in programming languages of different paradigms. Each source code of different language is then transformed into the list of common tokens that are compared. Experimental results using exEyes show that our proposed method using common tokens is effective in detecting cross-language clones.
Park, Gunwoo;Hong, Sung-Moon;Kim, Hyunha;Doh, Kyung-Goo
Journal of Software Assessment and Valuation
/
v.15
no.1
/
pp.43-53
/
2019
BigCloneBench has recently been used for performance evaluation of code clone detection tool using machine learning. However, since BigCloneBench is not a benchmark that is optimized for machine learning, incorrect learning data can be created. In this paper, we have shown through experiments using machine learning that the set of Type-4 clone methods provided by BigCloneBench can additionally be found. Experimental results using Tree-Based Convolutional Neural Network show that our proposed method is effective in improving BigCloneBench's dataset.
Proceedings of the Korean Information Science Society Conference
/
1998.10a
/
pp.311-313
/
1998
이동에이전트는 독립된 객체로서 자율성을 가지고 컴퓨터를 이동하며 부연된 임무를 수행하는 프로그램이다. 이동에이전트는 코드와 데이터로 구성된 프로그램이므로 쉽게 복제될 수 있다. 이렇게 복제된 이동에이전트를 이동에이전트 클론이라 한다. 복제된 클론은 원본과 구별이 불가능하다. 이것은 에이전트의 인증을 불가능하게 만들고 예상되지 않은 에이전트의 중복 수행을 야기하며 에이전트의 내부정보 유출 공격을 위한 수단으로 사용된다. 본 논문에서는 이동에이전트 클론에 의한 이러한 문제점을 고찰하고 온라인 상에서 클론의 존재를 탐지하고 실행을 방지하며 클론을 생성한 서버를 확인하는 프로토콜을 설계한다.
KIPS Transactions on Software and Data Engineering
/
v.12
no.1
/
pp.1-18
/
2023
Similar software is often developed with the Clone-And-Own (CAO) approach that copies and modifies existing artifacts. The CAO approach is considered as a bad practice because it makes maintenance difficult as the number of cloned products increases. Software product line engineering is a methodology that can solve the issue of the CAO approach by developing a product family through systematic reuse. Migrating product families that have been developed with the CAO approach to the product line engineering begins with finding, integrating, and building them as reusable assets. However, cloning occurs at various levels from directories to code lines, and their structures can be changed. This makes it difficult to build product line code base simply by finding clones. Successful migration thus requires unifying the source code's file path, class name, and method signature. This paper proposes a clustering method that identifies a set of similar codes scattered across product variants and some of their method full paths are different, so path unification is necessary. In order to show the effectiveness of the proposed method, we conducted an experiment using the Apo Games product line, which has evolved with the CAO approach. As a result, the average precision of clustering performed without preprocessing was 0.91 and the number of identified common clusters was 0, whereas our method showed 0.98 and 15 respectively.
Plagiarism refers to the act of using the original data as if it were one's own without revealing the source. The plagiarism of source code causes a variety of problems, including legal disputes. Plagiarism in software projects is usually determined by measuring similarity by comparing every pair of source code within two projects. However, blindly comparing every pair has been a huge computational burden, causing a major factor of not using tools of better accuracy. If we can only compare pairs that are probable to be clones, eliminating pairs that are impossible to be clones, we can concentrate more on improving the accuracy of detection. In this paper, we propose a method of selecting highly probable candidates of clone pairs by pre-classifying suspected source-codes using a machine-learning model called code2vec.
Numerical studies have been conducted to predict the solid-liquid separation efficiency of turbulent flow in a hydrocyclone using a commercial CFD code. To validate the CFD code, several preliminary numerical calculations are carried out to determine the influence of parameters such as grid systems, numerical schemes, and turbulence models. The numerical studies have been performed on the hydrocyclones with the different vortex finder geometries by changing the mass flow rate, and the results were compared with the experimental data. The results show that the CFD code can be used as a design tool to improve the performance of hydrocyclones.
Proceedings of the Korea Information Processing Society Conference
/
2017.11a
/
pp.2-5
/
2017
기존의 어셈블러는 시각적으로 불편하고 사용자 편의를 위한 기능을 제공하지 않으며 최신의 컴퓨터와의 호환성 문제가 있었다. 이러한 문제점들의 해결책으로 나온 SIC/XE 어셈블러 시뮬레이터 오픈 소스를 GitHub에서 클론하여 분석하고 테스트하였다. 본 논문에서는 오픈 소스 SIC/XE 어셈블러 시뮬레이터의 다양한 오류를 분석하고 이를 수정하였다. 또한 리터럴 테이블, 심볼 테이블, 목적코드 및 오류 메시지의 시각화를 통해 기존의 SIC/XE 어셈블러 시뮬레이터를 개선시켜 사용자 편의를 높인 학습용 SIC/XE 어셈블러 시뮬레이터를 구현하였다.
A thermophilic bacterium producing the extracellular cellulase was isolated from soybean paste, and the isolate WL-12 has been identified as Bacillus licheniformis on the basis on its 16S rRNA sequence, morphology and biochemical properties. A gene encoding the cellulase of B. licheniformis WL-12 was cloned and its nucleotide sequence was determined. This cellulase gene, designated celA, consisted of 1,551 nucleotides, encoding a polypeptide of 517 amino acid residues. The gene product contained catalytic domain and cellulose binding domain. The deduced amino acid sequence was highly homologous to those of cellulases of B. licheniformis, B. subtilis and B. amytoliquefaciens belonging to the glycosyl hydrolase family 5. When the celA gene was highly expressed using a strong B. subtilis promoter, the extracellular cellulase was produced up to 7.0 units/ml in B. subtilis WB700.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.