• Title/Summary/Keyword: 케이싱 볼트

Search Result 4, Processing Time 0.019 seconds

Cause Analysis of abnormal in Low Pressure Turbine Casing in Thermal Power Plant (화력발전소 저압터빈 케이싱 이상진동 원인분석)

  • Koo, Jae Raeyang;Lee, Doo Young;Lee, Wook Ryun;Kim, Hee Soo;Kim, Dong Hwan
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.300-302
    • /
    • 2014
  • 발전기 출력의 약 60%을 담당하는 저압터빈의 케이싱은 복수기와 연결되어 있으며 외부케이싱과 내부 케이싱으로 구성되어 있다. 저압터빈 케이싱은 사용연수의 증가에 다른 경년열화로 인하여 터빈 기초 지지대의 침하, 케이싱 볼트의 느슨해짐 등 외부의 여러 가지 환경변화에 의하여 고유진동수가 저하된다. 본고에서는 우리나라 화력발전소 저압터빈 케이싱의 고유진동수 변화에 의하여 터빈 운전 주파수와 일치하는 공진현상이 발생하고 발전설비 운전 신뢰성에 영향을 미치고 있는데 이에 대한 원인 분석과 최소한의 비용으로 공진현상을 저감하고 운전 신뢰성을 확보한 사례에 대하여 기술한다

  • PDF

Evaluation of Structural Integrity and Leakage for a Gas Turbine Casing (가스터빈 케이싱의 구조안전성 및 누설 평가)

  • Seo, Hee Won;Ham, Dong Woo;Kim, Kyung Kook;Han, Jeong Sam
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.29 no.4
    • /
    • pp.347-354
    • /
    • 2016
  • Because typical gas turbine systems have frequent startup and shutdown operations, it is likely to cause cracks at the gas turbine casing and gas leakages at casing flanges due to thermal fatigue and embrittlement. Therefore, the evaluation of structural integrity and gas leakage at the gas turbine casings must be performed. In this paper, we have evaluated the structural integrity of the turbine casing and bolts under a normal operation in accordance with ASME B&PVC and evaluated the leakage at casing flanges by examination of contact pressure calculated using the finite element analysis. Finally, we propose a design flow including finite element modeling, the interpretation and evaluation methods for gas turbine casings. This may be utilized in the design and development of gas turbine casings.

Investigation of the Thermo-mechanical Crack Initiation of the Gas Turbine Casing Using Finite Element Analysis (유한요소해석을 이용한 가스터빈 케이싱 열피로 균열발생 해석)

  • Kang, M.S.;Yun, W.N.;Kim, J.S.
    • Journal of Power System Engineering
    • /
    • v.13 no.5
    • /
    • pp.52-58
    • /
    • 2009
  • A gas turbine consists of an upstream compressor and a downstream turbine with a combustion chamber, and also the compressor and the turbine are generally coupled using a single shaft. Many casing bolts are used to assemble two horizontally separated casings, the gas turbine casing and the compressor casing, in both of axial and vertical directions. Because drilled holes for casing bolts in vertical direction are often too close to drilled holes for casing bolts in axial direction, one can observe cracks in the area frequently during operations of a gas turbine. In this study of the root cause analysis for the cracking initiating from the drilled holes of the casings of a gas turbine, the finite element analysis(FEA) was applied to evaluate the thermal and mechanical characteristics of the casings. By applying the field operation data recorded from combined cycle power plants for FEA, thermal and thermo-mechanical characteristics of a gas turbine are analyzed. The crack is initiated at the geometrical weak point, but it is found that the maximum stress is relieved when the same type of cracks is introduced on purpose during FEA. So, it is verified that the local fracture could be delayed by machining the same type of defects near the hole for casing flange bolts of the gas turbine, where the crack is initiated.

  • PDF