• Title/Summary/Keyword: 케노피 구조

Search Result 2, Processing Time 0.017 seconds

Analysis of Plants Shape by Image Processing (영상처리에 의한 식물체의 형상분석)

  • 이종환;노상하;류관희
    • Journal of Biosystems Engineering
    • /
    • v.21 no.3
    • /
    • pp.315-324
    • /
    • 1996
  • This study was one of a series of studies on application of machine vision and image processing to extract the geometrical features of plants and to analyze plant growth. Several algorithms were developed to measure morphological properties of plants and describing the growth development of in-situ lettuce(Lactuca sativa L.). Canopy, centroid, leaf density and fractal dimension of plant were measured from a top viewed binary image. It was capable of identifying plants by a thinning top viewed image. Overlapping the thinning side viewed image with a side viewed binary image of plant was very effective to auto-detect meaningful nodes associated with canopy components such as stem, branch, petiole and leaf. And, plant height, stem diameter, number and angle of branches, and internode length and so on were analyzed by using meaningful nodes extracted from overlapped side viewed images. Canopy, leaf density and fractal dimension showed high relation with fresh weight or growth pattern of in-situ lettuces. It was concluded that machine vision system and image processing techniques are very useful in extracting geometrical features and monitoring plant growth, although interactive methods, for some applications, were required.

  • PDF

A Study on the Prediction of Residual Probability of Fine Dust in Complex Urban Area (복잡한 도심에서의 유입된 미세먼지 잔류 가능성 예보 연구)

  • Park, Sung Ju;Seo, You Jin;Kim, Dong Wook;Choi, Hyun Jeong
    • Journal of the Korean earth science society
    • /
    • v.41 no.2
    • /
    • pp.111-128
    • /
    • 2020
  • This study presents a possibility of intensification of fine dust mass concentration due to the complex urban structure using data mining technique and clustering analysis. The data mining technique showed no significant correlation between fine dust concentration and regional-use public urban data over Seoul. However, clustering analysis based on nationwide-use public data showed that building heights (floors) have a strong correlation particularly with PM10. The modeling analyses using the single canopy model and the micro-atmospheric modeling program (ENVI-Met. 4) conducted that the controlled atmospheric convection in urban area leaded to the congested flow pattern depending on the building along the distribution and height. The complex structure of urban building controls convective activity resulted in stagnation condition and fine dust increase near the surface. Consequently, the residual effect through the changes in the thermal environment caused by the shape and structure of the urban buildings must be considered in the fine dust distribution. It is notable that the atmospheric congestion may be misidentified as an important implications for providing information about the residual probability of fine dust mass concentration in the complex urban area.