• Title/Summary/Keyword: 컴퓨팅

Search Result 7,862, Processing Time 0.032 seconds

An Investigation Into the Effects of AI-Based Chemistry I Class Using Classification Models (분류 모델을 활용한 AI 기반 화학 I 수업의 효과에 대한 연구)

  • Heesun Yang;Seonghyeok Ahn;Seung-Hyun Kim;Seong-Joo Kang
    • Journal of the Korean Chemical Society
    • /
    • v.68 no.3
    • /
    • pp.160-175
    • /
    • 2024
  • The purpose of this study is to examine the effects of a Chemistry I class based on an artificial intelligence (AI) classification model. To achieve this, the research investigated the development and application of a class utilizing an AI classification model in Chemistry I classes conducted at D High School in Gyeongbuk during the first semester of 2023. After selecting the curriculum content and AI tools, and determining the curriculum-AI integration education model as well as AI hardware and software, we developed detailed activities for the program and applied them in actual classes. Following the implementation of the classes, it was confirmed that students' self-efficacy improved in three aspects: chemistry concept formation, AI value perception, and AI-based maker competency. Specifically, the chemistry classes based on text and image classification models had a positive impact on students' self-efficacy for chemistry concept formation, enhanced students' perception of AI value and interest, and contributed to improving students' AI and physical computing abilities. These results demonstrate the positive impact of the Chemistry I class based on an AI classification model on students, providing evidence of its utility in educational settings.

The Mirror-based real-time dynamic projection mapping design and dynamic object detection system research (미러 방식의 실시간 동적 프로젝션 매핑 설계 및 동적 사물 검출 시스템 연구)

  • Soe-Young Ahn;Bum-Suk Seo;Sung Dae Hong
    • Journal of Internet of Things and Convergence
    • /
    • v.10 no.2
    • /
    • pp.85-91
    • /
    • 2024
  • In this paper, we studied projection mapping, which is being utilized as a digital canvas beyond space and time for theme parks, mega events, and exhibition performances. Since the existing projection technology used for fixed objects has the limitation that it is difficult to map moving objects in terms of utilization, it is urgent to develop a technology that can track and map moving objects and a real-time dynamic projection mapping system based on dynamically moving objects so that it can respond to various markets such as performances, exhibitions, and theme parks. In this paper, we propose a system that can track real-time objects in real time and eliminate the delay phenomenon by developing hardware and performing high-speed image processing. Specifically, we develop a real-time object image analysis and projection focusing control unit, an integrated operating system for a real-time object tracking system, and an image processing library for projection mapping. This research is expected to have a wide range of applications in the technology-intensive industry that utilizes real-time vision machine-based detection technology, as well as in the industry where cutting-edge science and technology are converged and produced.

Performance Evaluation and Analysis on Single and Multi-Network Virtualization Systems with Virtio and SR-IOV (가상화 시스템에서 Virtio와 SR-IOV 적용에 대한 단일 및 다중 네트워크 성능 평가 및 분석)

  • Jaehak Lee;Jongbeom Lim;Heonchang Yu
    • The Transactions of the Korea Information Processing Society
    • /
    • v.13 no.2
    • /
    • pp.48-59
    • /
    • 2024
  • As functions that support virtualization on their own in hardware are developed, user applications having various workloads are operating efficiently in the virtualization system. SR-IOV is a virtualization support function that takes direct access to PCI devices, thus giving a high I/O performance by minimizing the need for hypervisor or operating system interventions. With SR-IOV, network I/O acceleration can be realized in virtualization systems that have relatively long I/O paths compared to bare-metal systems and frequent context switches between the user area and kernel area. To take performance advantages of SR-IOV, network resource management policies that can derive optimal network performance when SR-IOV is applied to an instance such as a virtual machine(VM) or container are being actively studied.This paper evaluates and analyzes the network performance of SR-IOV implementing I/O acceleration is compared with Virtio in terms of 1) network delay, 2) network throughput, 3) network fairness, 4) performance interference, and 5) multi-network. The contributions of this paper are as follows. First, the network I/O process of Virtio and SR-IOV was clearly explained in the virtualization system, and second, the evaluation results of the network performance of Virtio and SR-IOV were analyzed based on various performance metrics. Third, the system overhead and the possibility of optimization for the SR-IOV network in a virtualization system with high VM density were experimentally confirmed. The experimental results and analysis of the paper are expected to be referenced in the network resource management policy for virtualization systems that operate network-intensive services such as smart factories, connected cars, deep learning inference models, and crowdsourcing.

A study on the design of an efficient hardware and software mixed-mode image processing system for detecting patient movement (환자움직임 감지를 위한 효율적인 하드웨어 및 소프트웨어 혼성 모드 영상처리시스템설계에 관한 연구)

  • Seungmin Jung;Euisung Jung;Myeonghwan Kim
    • Journal of Internet Computing and Services
    • /
    • v.25 no.1
    • /
    • pp.29-37
    • /
    • 2024
  • In this paper, we propose an efficient image processing system to detect and track the movement of specific objects such as patients. The proposed system extracts the outline area of an object from a binarized difference image by applying a thinning algorithm that enables more precise detection compared to previous algorithms and is advantageous for mixed-mode design. The binarization and thinning steps, which require a lot of computation, are designed based on RTL (Register Transfer Level) and replaced with optimized hardware blocks through logic circuit synthesis. The designed binarization and thinning block was synthesized into a logic circuit using the standard 180n CMOS library and its operation was verified through simulation. To compare software-based performance, performance analysis of binary and thinning operations was also performed by applying sample images with 640 × 360 resolution in a 32-bit FPGA embedded system environment. As a result of verification, it was confirmed that the mixed-mode design can improve the processing speed by 93.8% in the binary and thinning stages compared to the previous software-only processing speed. The proposed mixed-mode system for object recognition is expected to be able to efficiently monitor patient movements even in an edge computing environment where artificial intelligence networks are not applied.

A Fusion Sensor System for Efficient Road Surface Monitorinq on UGV (UGV에서 효율적인 노면 모니터링을 위한 퓨전 센서 시스템 )

  • Seonghwan Ryu;Seoyeon Kim;Jiwoo Shin;Taesik Kim;Jinman Jung
    • Smart Media Journal
    • /
    • v.13 no.3
    • /
    • pp.18-26
    • /
    • 2024
  • Road surface monitoring is essential for maintaining road environment safety through managing risk factors like rutting and crack detection. Using autonomous driving-based UGVs with high-performance 2D laser sensors enables more precise measurements. However, the increased energy consumption of these sensors is limited by constrained battery capacity. In this paper, we propose a fusion sensor system for efficient surface monitoring with UGVs. The proposed system combines color information from cameras and depth information from line laser sensors to accurately detect surface displacement. Furthermore, a dynamic sampling algorithm is applied to control the scanning frequency of line laser sensors based on the detection status of monitoring targets using camera sensors, reducing unnecessary energy consumption. A power consumption model of the fusion sensor system analyzes its energy efficiency considering various crack distributions and sensor characteristics in different mission environments. Performance analysis demonstrates that setting the power consumption of the line laser sensor to twice that of the saving state when in the active state increases power consumption efficiency by 13.3% compared to fixed sampling under the condition of λ=10, µ=10.

Korean Facial Expression Emotion Recognition based on Image Meta Information (이미지 메타 정보 기반 한국인 표정 감정 인식)

  • Hyeong Ju Moon;Myung Jin Lim;Eun Hee Kim;Ju Hyun Shin
    • Smart Media Journal
    • /
    • v.13 no.3
    • /
    • pp.9-17
    • /
    • 2024
  • Due to the recent pandemic and the development of ICT technology, the use of non-face-to-face and unmanned systems is expanding, and it is very important to understand emotions in communication in non-face-to-face situations. As emotion recognition methods for various facial expressions are required to understand emotions, artificial intelligence-based research is being conducted to improve facial expression emotion recognition in image data. However, existing research on facial expression emotion recognition requires high computing power and a lot of learning time because it utilizes a large amount of data to improve accuracy. To improve these limitations, this paper proposes a method of recognizing facial expressions using age and gender, which are image meta information, as a method of recognizing facial expressions with even a small amount of data. For facial expression emotion recognition, a face was detected using the Yolo Face model from the original image data, and age and gender were classified through the VGG model based on image meta information, and then seven emotions were recognized using the EfficientNet model. The accuracy of the proposed data classification learning model was higher as a result of comparing the meta-information-based data classification model with the model trained with all data.

Precision Evaluation of Expressway Incident Detection Based on Dash Cam (차량 내 영상 센서 기반 고속도로 돌발상황 검지 정밀도 평가)

  • Sanggi Nam;Younshik Chung
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.22 no.6
    • /
    • pp.114-123
    • /
    • 2023
  • With the development of computer vision technology, video sensors such as CCTV are detecting incident. However, most of the current incident have been detected based on existing fixed imaging equipment. Accordingly, there has been a limit to the detection of incident in shaded areas where the image range of fixed equipment is not reached. With the recent development of edge-computing technology, real-time analysis of mobile image information has become possible. The purpose of this study is to evaluate the possibility of detecting expressway emergencies by introducing computer vision technology to dash cam. To this end, annotation data was constructed based on 4,388 dash cam still frame data collected by the Korea Expressway Corporation and analyzed using the YOLO algorithm. As a result of the analysis, the prediction accuracy of all objects was over 70%, and the precision of traffic accidents was about 85%. In addition, in the case of mAP(mean Average Precision), it was 0.769, and when looking at AP(Average Precision) for each object, traffic accidents were the highest at 0.904, and debris were the lowest at 0.629.

The Contact and Parallel Analysis of SPH Using Cartesian Coordinate Based Domain Decomposition Method (Cartesian 좌표기반 동적영역분할을 고려한 SPH의 충돌 및 병렬해석)

  • Moonho Tak
    • Journal of the Korean GEO-environmental Society
    • /
    • v.25 no.4
    • /
    • pp.13-20
    • /
    • 2024
  • In this paper, a parallel analysis algorithm for Smoothed Particle Hydrodynamics (SPH), one of the numerical methods for fluidic materials, is introduced. SPH, which is a meshless method, can represent the behavior of a continuum using a particle-based approach, but it demands substantial computational resources. Therefore, parallel analysis algorithms are essential for SPH simulations. The domain decomposition algorithm, which divides the computational domain into partitions to be independently analyzed, is the most representative method among parallel analysis algorithms. In Discrete Element Method (DEM) and Molecular Dynamics (MD), the Cartesian coordinate-based domain decomposition method is popularly used because it offers advantages in quickly and conveniently accessing particle positions. However, in SPH, it is important to share particle information among partitioned domains because SPH particles are defined based on information from nearby particles within the smoothing length. Additionally, maintaining CPU load balance is crucial. In this study, a highly parallel efficient algorithm is proposed to dynamically minimize the size of orthogonal domain partitions to prevent excess CPU utilization. The efficiency of the proposed method was validated through numerical analysis models. The parallel efficiency of the proposed method is evaluated for up to 30 CPUs for fluidic models, achieving 90% parallel efficiency for up to 28 physical cores.

Video classifier with adaptive blur network to determine horizontally extrapolatable video content (적응형 블러 기반 비디오의 수평적 확장 여부 판별 네트워크)

  • Minsun Kim;Changwook Seo;Hyun Ho Yun;Junyong Noh
    • Journal of the Korea Computer Graphics Society
    • /
    • v.30 no.3
    • /
    • pp.99-107
    • /
    • 2024
  • While the demand for extrapolating video content horizontally or vertically is increasing, even the most advanced techniques cannot successfully extrapolate all videos. Therefore, it is important to determine if a given video can be well extrapolated before attempting the actual extrapolation. This can help avoid wasting computing resources. This paper proposes a video classifier that can identify if a video is suitable for horizontal extrapolation. The classifier utilizes optical flow and an adaptive Gaussian blur network, which can be applied to flow-based video extrapolation methods. The labeling for training was rigorously conducted through user tests and quantitative evaluations. As a result of learning from this labeled dataset, a network was developed to determine the extrapolation capability of a given video. The proposed classifier achieved much more accurate classification performance than methods that simply use the original video or fixed blur alone by effectively capturing the characteristics of the video through optical flow and adaptive Gaussian blur network. This classifier can be utilized in various fields in conjunction with automatic video extrapolation techniques for immersive viewing experiences.

User-centric Context Model for Context-aware Application (맥락 인식 애플리케이션을 위한 사용자 중심의 맥락 모델)

  • Hong, Dong-Pyo;Woo, Woon-Tack
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2007.05a
    • /
    • pp.810-813
    • /
    • 2007
  • 본 논문에서는 맥락 인식 (context-aware) 애플리케이션 개발에 있어서 사용자의 맥락 정보를 보다 효과적으로 처리할 수 있는 사용자 중심의 맥락 모델을 제안한다. 유비쿼터스 컴퓨팅 개념의 확산과 함께 맥락 인식 애플리케이션들에 관한 많은 연구가 진행되고 있다. 하지만, 맥락에 대한 정의는 여전히 모호하며, 애플리케이션들 마다 서로 다른 형태의 맥락을 활용하고 있기 때문에, 맥락에 대한 보다 구체적인 정의와 다양한 애플리케이션에 활용 가능한 형태의 맥락 모델이 필요하다. 제안된 사용자 중심의 맥락 모델에서는 사용자가 애플리케이션과 상호작용할 때 사용자의 직접적인 명령을 제외한 사용자와 관련된 정보를 맥락으로 정의한다. 또한, 제안된 사용자 중심의 맥락은 5W1H 형태로 구조화한 맥락요소 (ContextElement), 맥락 요소들을 편리하게 처리할 수 있는 연산자들을 포함하는 맥락 (Context), 그리고 단편적인 맥락 정보뿐만 아니라 기존의 맥락 정보까지도 활용할 수 있는 맥락메모리 (ContextMemory)로 구성된다. 특히, 다양한 센서들로부터 획득된 정보를 맥락 모델의 인터페이스를 통해서 맥락 인식 애플리케이션에서 활용할 수 있기 때문에, 서로 다른 맥락 인식 애플리케이션들을 개발함에 있어서도 동일한 맥락 모델을 사용할 수 있는 장점이 있다. 제안된 맥락 모델의 유용함을 보이기 위해서, 센서로부터 획득된 맥락 정보를 처리하는데 소요되는 시간을 측정하는 실험을 하였다. 따라서 제안된 사용자 중심의 맥락 모델은 사용자와 맥락 인식 애플리케이션간 자연스러운 상호작용을 지원할 것으로 기대된다.) kcal/mol의 생성활성화 에너지 감을 나타내었고, TGA로부터의 분해활성화 에너지는 각각 31.94, 30.84, 24.16 kcal/mol의 값을 나타내었다.로 감소되었다(35.2% vs. 77.4%; p<0.01). 실험 2에서 다양한 정자 농도에 의한 정자 침투율과 정상 수정률을 바탕으로 판단했을 때 $4.6{\times}10^6/ml$의 정자 농도가 다른 정자 농도에 비해 난구 세포부착 난자의 체외 수정에 적합한 것으로 나타났다. 체외 수정과정에서 난구 세포 부착된 상태로 수정된 난자는 나화 난자에 비해 유의적으로(p<0.05) 높은 분할률(48.8% vs. 58.9%), 배반포 형성률(11.0% vs. 22.8%)과 배반포 세포수$(22{\pm}2\;vs.\;29{\pm}2)$를 나타내었다. 본 연구의 결과로부터 돼지의 체외 수정과정에서 난구 세포의 존재는 정자 침투를 저해하지만 분할률, 배반포 형성률 및 배반포의 세포수를 증가시키는 것으로 사료된다.수의 유출입 지점에 온도센서를 부착하여 냉각수의 온도를 측정하고 냉각수의 공급량과 대기의 온도 등을 측정하여 대사열의 발생을 추정할 수 있었다. 동시에 이를 이용하여 유가배양시 기질을 공급하는 공정변수로 사용하였다 [8]. 생물학적인 폐수처리장치인 활성 슬러지법에서 미생물의 활성을 측정하는 방법은 아직 그다지 개발되어있지 않다. 본 연구에서는 슬러지의 주 구성원이 미생물인 점에 착안하여 침전시 슬러지층과 상등액의 온도차를 측정하여 대사열량의 발생량을 측정하고 슬러지의 활성을 측정할 수 있는 방법을 개발하였다.enin과