• Title/Summary/Keyword: 컨테이너 터미널 생산성

Search Result 156, Processing Time 0.021 seconds

A Simulation Model for an ALV System at a Container Terminal (컨테이너 터미널의 ALV 시스템을 위한 시뮬레이션 모형)

  • Bae, Jong-Wook;Choi, Sang-Hee;Kim, Chang-Hyun;Park, Soon-O
    • Journal of the Korea Society for Simulation
    • /
    • v.17 no.4
    • /
    • pp.29-39
    • /
    • 2008
  • Recently, an ALV (Automated Lifting Vehicle) is studied as an efficient transporter, which can reduce the waiting time during ship operation in a container terminal. There are little of studies on an ALV system considering dynamic factors after analysing the cooperation between equipments. The performance of an ALV depends on self-loading & unloading of an ALV, vehicle’s interference, and occupancy of an available transfer point under dynamic environment. So, it is very difficult to evaluate the productivity of a container terminal with an ALV system. Therefore the simulation model with operational rules that be apt for an ALV system must be developed. Also the model has to consider the characteristics of interface operations and vehicle traffic. Supposing an container terminal with perpendicular layout, this study analyses the process of container handling operation and proposes operational rules such as the ALV dispatching, routing algorithm and so on for a model. We developed a simulation model for a container terminal with an ALV system using object-oriented simulation software, Anylogic.

  • PDF

A Study on High Stacking System Development at Container Terminal (컨테이너 터미널의 고층 장치시스템 개발방안)

  • Ha Tae-Young;Choi Sang-Hei;Kim Woo-Sung;Choi Yong-Seok
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2006.06b
    • /
    • pp.317-323
    • /
    • 2006
  • This paper deals with High Stacking System(HSS) development to develop a next generation port handling system for accommodating mega-sized container ships. It aims to develop the HSS that maximizes handling capacity within the limited space of the port. The system is expected to resolve the problem of yard space shortage as well as utilize innovative technology to ensure high-performance and automation at the terminal so as to enhance stevedoring productivity. The main objectives of this paper is suggesting the design concept drawing the HSS terminal and simulation analysis was undertaken taking into consideration performance of handling equipment, and port handling system Design concept drawing of the HSS terminal and will be used as base data for basic design and detailed design in actual operations of the terminal in the future. The HSS, to be applied to both conventional and new terminals, is expected to act as a catalyst for enhancing the value-added at ports.

  • PDF

Quay Crane Dual-cycle Plan considering Yard Tractor waiting time (야드 트랙터 대기시간을 고려한 크레인 듀얼 사이클 계획)

  • Chung, Chang-Yun;Shin, Jae-Young
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2009.10a
    • /
    • pp.220-221
    • /
    • 2009
  • One of the important performance measure for productivity at container terminals is the working productivity in the quay. working scheduling of quay cranes (QCs) gives a significant impact on the quay working productivity. The recent managers of the terminals pay high interests in equipment investment and operation methods with a new concept in order to enhance the quay working productivity. The double cycle or dual cycle, which is a method to increase the quay productivity with no application of new equipment, but with the change of operations, has been received strong attention in academic research. The majority of studies until this time has been realized the quay work as the bottleneck and focused on those works. However, if the QCs do notver, it the Cs d-trotver,(CT) if t the Cs, there would be the pos ibilf tes that the effectiveness of them is decreasedveaused by the longer, if t the Cs. Thus, this paper, suggests the solutions on the con th scheduling for the dual cycle operation considering the YT.

  • PDF

A Study on Two-step Dispatching for Multi-function Transport Vehicle at Container Terminal (컨테이너터미널에서 다기능 이송차량의 2단계 배차 방안)

  • Choi, Yong-Seok;Kim, Woo-Sun
    • Journal of Navigation and Port Research
    • /
    • v.32 no.10
    • /
    • pp.829-835
    • /
    • 2008
  • The objective of this study is to present the two-step dispatching strategy for the purpose of the transport vehicle with multi-function used in container terminal. The two-step dispatching is a method to save the waiting time between transport vehicle and cranes using real time location control. The first step dispatching is to allocate the destination location based on the real time location information. The second step dispatching is to indicate the specific job such as loading, unloading, and pick-up based on the condition of working area. This two-step dispatching strategy decreases the waiting times of the stevedoring system and will contribute at a productivity improvement in container terminal.

Development of Prediction Model for Yard Tractor Working Time in Container Terminal (컨테이너 터미널 야드 트랙터 작업시간 예측 모형 개발)

  • Jae-Young Shin;Do-Eun Lee;Yeong-Il Kim
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2023.05a
    • /
    • pp.57-58
    • /
    • 2023
  • The working time for loading and transporting containers in the container terminal is one of the factors directly related to port productivity, and minimizing working time for these operations can maximize port productivity. Among working time for container operations, the working time of yard tractors(Y/T) responsible for the transportation of containers between berth and yard is a significant portion. However, it is difficult to estimate the working time of yard tractors quantitatively, although it is possible to estimate it based on the practical experience of terminal operators. Recently, a technology based on IoT(Internet of Things), one of the core technologies of the 4th industrial revolution, is being studied to monitoring and tracking logistics resources within the port in real-time and calculate working time, but it is challenging to commercialize this technology at the actual port site. Therefore, this study aims to develop yard tractor working time prediction model to enhance the operational efficiency of the container terminal. To develop the prediction model, we analyze actual port operation data to identify factors that affect the yard tractor's works and predict its working time accordingly.

  • PDF

A Study on the Container Terminal Concentration for Busan Port (부산항 컨테이너터미널 통합에 관한 연구 - 항만집중도분석과 통합효과-)

  • Choo, Yeon-Gil;Ahn, Ki-Myung
    • Journal of Korea Port Economic Association
    • /
    • v.25 no.3
    • /
    • pp.207-228
    • /
    • 2009
  • The purpose of this paper is to analyze the concentration effect of Busan container terminal. Productivity and efficiency have played key role to attract more cargo to a port because these are important factors to select liners’ calling port in vessel deployment. It means that productivity directly links with the liners’ vessel operation cost. The main results of this paper are as follows: the port concentration by terminal integration can improve the port's external image with recovering tariff competitiveness and also facilitate economic effect of size through efficient management.

  • PDF

Computation of the Shortest Distance of Container Yard Tractor for Multi-Cycle System (다중 사이클 시스템을 위한 실시간 위치 기반 컨테이너 야드 트랙터 최단거리 계산)

  • Kim, Han-Soo;Park, Man-Gon
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.1
    • /
    • pp.17-29
    • /
    • 2010
  • A container terminal productivity is maximized by a minimized time for processing containers. So, we have been elevated the container terminal productivity through an improvement of computing system, but there are a limitation because of problems for transportation management and method. A Y/T(Yard Tractor), which is a representative transportation, is able to do only one process, loading or unloading, at one time. So if the Y/T can do loading and unloading step by step at a same time, the processing time would be shortened. In this paper, we proposed an effective operating process of Y/T(Yard Tractor) Multi-Cycle System by applying RTLS(Real Time Location System) to Y/T(Yard Tractor) in order to improve the process of loading and unloading at the container terminal. For this, we described Multi-Cycle System. This system consists of a real time location of Y/T based on RTLS, an indicating of Y/T location in real time with GIS technology, and an algorithm(Dijkstra's algorithm) of the shortest distance. And we used the system in container terminal process and could improve the container terminal productivity. As the result of simulation for the proposed system in this paper, we could verify that 9% of driving distance was reduced compared with the existing rate and 19% of driving distance was reduced compared with the maximum rate. Consequently, we could find out the container performance is maximized.

A Study on Economical efficiency Analysis by Handling Capacity and the Size of Container Terminal (컨테이너 터미널의 하역능력과 규모에 따른 경제성 분석에 관한 연구)

  • Woo Seung-Hwa;Song Yong-Seok;Nam Ki-Chan;Kwak Kyu-Seok
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2004.11a
    • /
    • pp.127-132
    • /
    • 2004
  • Most q the domestic container terminals are inferior to throughput q container. The reason why they have the difference between the handling capacity q planed quay and its real. By putting into quay handling equipment, the productivity of quay can be improved, waiting rate q the ship can be lowed. This paper suggests more resonable terminal construction, throughout comparing with previous construction way, improved handling capacity and the economical efficiency of equipment costs, labor costs, construction costs, operation costs on change of terminal size by adding the equipment.

  • PDF

A study on the productivity effects of transport vehicle by pooling system at container terminals (이송장비의 Pooling 운행방식에 따른 터미널하역생산성 효과)

  • Ha, Tae-Young;Shin, Jae-Yeong;Choi, Yong-Seok
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.29 no.1
    • /
    • pp.377-382
    • /
    • 2005
  • This paper deals with productivity improvement of stevedoring system by pooling opertaions of transport vehicle at automated container terminal. Usually, in traditional container terminals, grouping operations of transport vehicle are applied for container crane because vehicle routing path is simple and vehicle assignment is easy. But this static assignment(SA) operation that arrsign vehicles to container crane ar apron reduces flexibility of vehicles. Therefore, This paper presented 4 dynamic assignment(DA) method to improve efficiency of vehicles. These 4 dynamic assignment method consider present situations of container crane such as sequence(Se), queue time(Qt), productivity(Pr), numeric of vehicle assignment(Nv), numeric of buffer(Nb) at vehicles assignment. At the results, dynamic assignment operation to consider Qt, Nv, Nb is most efficient and by next time, dynamic assignment operation to consider Se is superior more than static assignment operation. but, dynamic assignment operation to consider Pr or Qt of container crane only is inefficient than static assignment operation.

  • PDF

A Study on Yard Operation in Container Terminal (컨테이너 터미널에서의 장치장 운용 계획에 관한 연구)

  • Kim Kap-Hwan;Kim Jae-Joong;Ryu Kwang-Ryel;Park Nam-Kyu;Choi Hyung-Rim;Jeon Su-Min
    • Journal of Intelligence and Information Systems
    • /
    • v.12 no.1
    • /
    • pp.125-137
    • /
    • 2006
  • One of the important tactical problems for the efficient operation of container terminals is to determine the usage of storage space There are two different strategies for stacking containers; mixing strategy, in which outbound containers and inbound containers are mixed in the same block, and segregating strategy, in which outbound containers and inbound containers are stacked in blocks different from each other The performance of space allocation strategies also depends on the types of handling equipment in the yard and the number of handling equipment allocated to each block. A simulation model is developed considering various handling characteristics of yard cranes. Performances of various space and equipment allocation strategies are evaluated by using the simulation model.

  • PDF