• Title/Summary/Keyword: 컨테이너크레인

Search Result 313, Processing Time 0.025 seconds

Control Architecture for Automated Container Cranes (무인자동화를 위한 컨테이너크레인의 제어구조)

  • 김형진;홍경태;홍금식
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.746-751
    • /
    • 2004
  • Demands for higher productivity in container terminal environments continues to escalate consideration of equipment upgrades. And then transportation of containers using the automated container crane becomes more and more important for productivity enhancements. Introducing a hybrid control architecture to the container crane, it provides a effective means to the automated operation of the container crane. This paper addresses the methodology for automation of container cranes. In addition, this paper proposes a new control architecture for the automated container crane and explains each component of that architecture. The control architecture is composed of a deliberative control layer, a sequencing layer, and a reactive control layer. The proposed architecture is applied to a dual-hoist double-trolley container crane.

  • PDF

A Comparison of Operational Productivity between Conventional berth and Indented berth in Container Terminals (컨테이너 터미널에서 일반부두와 양현부두의 본선작업 완료시간 비교 연구)

  • Jeong, Da-Hun;Park, Yeong-Man;Lee, Byeong-Gwon;Kim, Gap-Hwan
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2006.11a
    • /
    • pp.336-345
    • /
    • 2006
  • 최근 컨테이너 선박의 대형화는 물동량을 크게 증가 시켰으며, 이로 인해 컨테이너 터미널에서는 규모의 경제를 달성하고, 선사의 요구를 만족시키기 위해 노력하고 있다. 이에 대한대안이 양현부두(Indented berth)의 등장이다. 양현부두에는 대형 컨테이너선의 물량을 신속히 처리하기 위해 선석에서 컨테이너를 취급하는 장비인 안벽크레인(Quay Crane : QC)의 작업 대수가 일반부두(Conventional berth)보다는 많이 할당될 수 있다. 본 연구에서는 일반부두와 양현부두의 작업 생산성을 비교하였다. 이를 위하여 탐색기법인 GRASP(Greedy Randomized Adaptive Search Procedure)를 적용한 안벽크레인 일정계획 알고리즘을 이용하였다. 또한 컨테이너 터미널의 실제 자료를 이용하여 두 가지 형태의 부두에서의 본선작업 완료시간을 비교 하였다.

  • PDF

The Development of The Automated Container Terminal Simulator for Evaluating of AGV Guide Path and AGV Numbers (첨단 자동화 컨테이너 터미널의 AGV 이동경로 평가 및 적정 운영 대수 산정을 위한 시뮬레이터 개발)

  • 민상규;정귀훈;하승진;김형식;변성태;이영석
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2002.05a
    • /
    • pp.152-157
    • /
    • 2002
  • 본 연구에서는 컨테이너 터미널의 자동화 설비 중 안벽용 크레인(Quay Crane: QC)과 장치장용 크레인(Automated Transfer Crance: ATC)간의 컨테이너 이송을 담당하는 AGV(Automated Guided Vehicle)의 운영에 관한 시뮬레이션을 수행할 수 있는 전용의 시 뮬레이터를 개발하는데 목적은 두고 수행하였다. 자동화 컨테이너 터미널의 처리 능력은 선석의 QC 능력에 의해서 결정되지만, QC의 능력을 최적화하기 위해서는 컨테이너 터미널 내에서의 AGV의 운영 효율이 결정적인 역할을 한다. 또한 AGV의 운영 효율에는 장치장의 ATC 작업시간이 영향을 준다. 연구결과, AGV의 운영 효율 평가를 위한 시뮬레이터를 개발하였으며, 이를 이용하여 QC의 작업시간과 ATC의 작업시간에 따른 AGV의 적정대수를 산출하였다. 본 시뮬레이터는 실제 컨테이너 터미널의 운영 상대와 유사한 시뮬레이션을 수행할 수 있고, 컨데이니 터미널의 운영 능력을 산출하는데 적합하도록 개발되었다.

  • PDF

Real Time Scheduling for Multiple Yard Cranes in an Automated Container Terminal (자동화 컨테이너 터미널의 복수 장치장 크레인을 위한 실시간 작업 계획 수립)

  • Park, Tae-Jin;Choe, Ri;Ryu, Kwang-Ryel
    • Journal of Navigation and Port Research
    • /
    • v.31 no.10
    • /
    • pp.869-877
    • /
    • 2007
  • This paper proposes a realtime scheduling method using local search algorithm for non-crossable yard cranes in automated container terminal. To take into consideration the dynamic property of yard crane operation and satisfy the real time constraint, the proposed method repeatedly builds crane schedule for the jobs in a fixed length look-ahead horizon whenever a new job is requested In addition, the proposed method enables the co-operation between yard cranes through prior re-handling and re-positioning in order to resolve the workload imbalance problem between the two cranes, which is one of the primary causes that lower the performance of yard cranes. Simulation-based experiments have shown that the proposed method outperforms the heuristic based methods, and the cooperation scheme contributes a lot to the performance improvement.

A Study on Optimized Decision Model for Transfer Crane Operation in Container Terminal (컨테이너터미널 트랜스퍼 크레인의 배정 및 이동경로 최적화 모델)

  • Shin, Jeong-Hoon;Yu, Song-Jin;Chang, Myung-Hee
    • Journal of Navigation and Port Research
    • /
    • v.32 no.6
    • /
    • pp.465-471
    • /
    • 2008
  • As the excessive competition between container terminals has been deepening, not only productivity, but also cost economic of the terminals has been raised. With regard to this, the competitiveness of the terminals is limited because of inefficiency operation of transfer crane(T/C) which needs large amount of energy consumption. Therefore, it is possible that the improvement in the T/C operation leads to saving cost for resources and energy as well as increasing the productivity of the terminals. This study provides 'the K-Means Clustering based Optimized Decision Model for Transfer Crane Operation', referring to 'RFID & RTLS based Port Logistics Initiative' of Ministry of Land, Transportation and Maritime Affairs and estimates the efficiency through simulating.

Models for Determining the Size of Import Container Block in Automated Container Terminals (자동화 컨테이너 터미널에서 수입 컨테이너 장치 블록 크기 결정을 위한 모형)

  • Kim, Ki-Young
    • Journal of Navigation and Port Research
    • /
    • v.31 no.8
    • /
    • pp.705-710
    • /
    • 2007
  • The productivity of automated container terminals is significantly affected by not only the speed related performances of automated transfer cranes(ATCs) but also the sizes of container blocks. In this paper, it is discussed how to determine the size of import container blocks considering both the container handling times of an ATC and their storage space. Firstly, evaluation models are suggested for the container handling times of an ATC in a typical import container blocks. Secondly, three mathematical formulations are suggested to determine the size of import container blocks. Numerical experiments for the suggested models to determine the size of import container block are provided.

A Study on Development ATCS of Transfer Crane using Neural Network Predictive Control (신경회로망 예측제어에 의한 Transfer Crane의 ATCS 개발에 관한 연구)

  • 손동섭;이진우;이영진;이권순
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2002.11a
    • /
    • pp.113-119
    • /
    • 2002
  • Recently, an automatic crane control system is required with high speed and rapid transportation. During the operation of crane system in container yard it is necessary to control the crane trolley position and loop length so that the swing of the hanging container is minimized We can do development of unmanned automation control system using automation travel control technique and anti-sway technique in crane system. Therefore, we designed a controller for Automation travel control to control the transfer crane system. Analyzed crane system through simulation, and proved excellency of control performance than other conventional controllers.

  • PDF

High Performance Control of Container Crane using Adaptive-Fuzzy Control (적응 퍼지제어를 이용한 컨테이너 크레인의 고성능제어)

  • Jung, Dong-Hwo;Kim, Do-Yun;Jung, Byung-Jin
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.2
    • /
    • pp.115-124
    • /
    • 2009
  • This paper proposed an adaptive fuzzy controller for controlling speed and positions of a container crane. The motor used in container crane is installed as SynRM with variable-speed drive having the robustness on the problems of energy and environment. The conventional PI controller is not able to accurately track the position, speed and sway angle of trolley due to the factors of environment and the parameter variety. In the paper, we analyzed the performance of SynRM derive applied to the container crane by using an adaptive fuzzy control of SynRM in order to solve those problems. This paper analyzed the characteristics of position and speed response and compared the performance of PI controller with an adapative Fuzzy controller, proving the validity.

Implementation of Efficient Container Number Recognition System at Automatic Transfer Crane in Container Terminal Yard (항만 야드 자동화크레인(ATC)에서 효율적인 컨테이너번호 인식시스템 개발)

  • Hong, Dong-Hee
    • Journal of the Korea Society of Computer and Information
    • /
    • v.15 no.9
    • /
    • pp.57-65
    • /
    • 2010
  • This paper describes the method of efficient container number recognition in colored container image with number plate at ATC(Automatic Transfer Crane) in container terminal yard. At the Sinseondae terminal gate in Busan, the container number recognition system is installed by "intelligent port-logistics system technology development", that is government research and development project. It is the method that it sets up the tunnel structure inside camera on the gate and it recognizes the container number in order to recognize the export container cargo automatically. However, as the automation equipment is introduced to the container terminal and the unmanned of a task is gradually accomplished, the container number recognition system for the confirmation of the object of work is required at ATC in container terminal yard. Therefore, the container number recognition system fitted for it is necessary for ATC in container terminal yard in which there are many intrusive of the character recognition through image including a sunlight, rain, snow, shadow, and etc. unlike the gate. In this paper, hardware components of the camera, illumination, and sensor lamp were altered and software elements of an algorithm were changed. that is, the difference of the brightness of the surrounding environment, and etc. were regulated for recognize a container number. Through this, a shadow problem, and etc. that it is thickly below hung with the sunlight or the cargo equipment were solved and the recognition time was shortened and the recognition rate was raised.

Design Methodology of Yard Layout in Port Container Terminal (컨테이너터미널의 장치장 레이아웃 설계방법)

  • Choi Yong-Seok;Ha Tae-Young
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2004.11a
    • /
    • pp.183-188
    • /
    • 2004
  • This paper presents a method for designing layout on the yard and evaluating alternative designs of the layout by applying simulation. The design method is based on the concepts of the conventional port container terminal with yard layout, In general, yard design of the container terminal is consists of the two major parts. One is to divide yard area between the number of sections and the number of runs and the other is to decide the number of equipment that is the yard truck and yard crane. In the past days, this design was depended on the experience of the terminal operator and the reproduction of the conventional terminal layout because it is a very complex decision problem. In this paper, we suggest the method of yard design as a conceptual procedure and estimate the efficiency of the container crane and the optimal number of equipment using simulation. In the experiment results, the number of sections and runs on yard area, the number of yard truck per container crane and the number of yard crane per run are decided. In addition, the traffic flow among blocks on yard layout is estimated in terms of rate.

  • PDF