• 제목/요약/키워드: 컨덴서 튜브

검색결과 13건 처리시간 0.018초

다공 Al 컨덴서 튜브의 압출공정 해석 (Extrusion Process Analysis for Al Condenser Tube with Multi Hole)

  • 배재호;이정민;김병민
    • 소성∙가공
    • /
    • 제13권8호
    • /
    • pp.723-730
    • /
    • 2004
  • This paper describes the analysis of extrusion process and integrity for a condenser tube which is a component of the heat exchanger in automobile and all conditioning apparatus. Recently, according to the development of analysis method using the computer, the numerical simulation have been applied to the 3-dimensional hot extrusion process with complex section area of the non-steady statement and then results of the analysis have been applied to optimal die design and process design. In this paper, firstly, the die design was performed for a condenser tube with a multi-hole section and the rigid-plasticity FE analysis performed of extrusion process. Secondly, we estimated metal flow of billet, extrusion load, welding pressure in chamber etc. and evaluated the pressure and elastic strain of the die land and mandrel tooth profile through a stress analysis of the die. Finally, the extrusion test was performed to estimate the validity of FE analysis. This paper confirmed that the designed extrusion die of the research is satisfactorily designed fur integrity of condenser tube.

포트홀 다이를 이용한 Al1050 컨덴서 튜브의 직접압출공정 기술 개발 (Development of Direct Extrusion Process on Al 1050 Condenser Tube by using Porthole Die)

  • 이정민;김병민;강충길;조형호
    • 한국정밀공학회지
    • /
    • 제21권7호
    • /
    • pp.53-61
    • /
    • 2004
  • Condenser tube which is used for a cooling system of automobiles is mainly manufactured by conform extrusion. However, direct extrusion using porthole die in comparison with conform extrusion has many advantages such as improvement of productivity, reduction of production cost etc. In general, the porthole die extrusion process is useful for manufacturing long tubes with hollow sections and consists of three stages(dividing, welding and forming stages). Especially, Porthole die for producing condenser tube is very complex. Thus, in order to obtain the detailed mechanics, to assist in the design of proper die shapes and sizes, and to improve the quality of products, porthole die extrusion should be analyzed in as non-steady state as possible. This paper describes FE analysis of non-steady state porthole die extrusion for producing condenser tube with multi-hole through 3D simulation in the non-steady state during the entire process to evaluate detailed metal flow, temperature distribution, welding pressure and extrusion load. Also to validate FE simulation of porthole die extrusion, a comparison of simulation and experiment results was presented in this paper.

포트홀 다이를 이용한 컨덴서 튜브 직접압출 공정해석 및 금형강도 해석 (Die stress and Process of Analysis for Condenser Tube Extrusion by using a Porthole Die)

  • 이정민;이상곤;김병민;조형호;조훈
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 춘계학술대회 논문집
    • /
    • pp.1030-1033
    • /
    • 2002
  • In this study, it is important that we have an understanding of the metal flow for manufacturing condenser tube in porthole die extrusion, because this need to provide for household appliances market that is expected to grow into the major market of the cooling system hereafter. Condenser tube is mainly manufactured by conform exclusion. However, this method was not satisfied a series of the needs for manufacturing condenser tube as compared with porthole die extrusion. The deforming skill recently is required high-productivity, high-accuracy and reducing lead-time, thus it is essential to substitute conform exclusion by porthole die exclusion. Porthole die extrusion has many advantages such as improvement of productivity, reduction of production cost etc. In general, the porthole die extrusion process consists of three stages(dividing, welding and forming stages). In order to obtain the detailed mechanics, to assist in the design of proper die shapes and sizes, and to improve the quality of products, porthole die extrusion should be analyzed in as non-steady state as possible during the entire process to evaluate detailed metal flow, temperature distribution, welding pressure and extrusion lead, and therm stress analysis was practiced to obtain effective stress and elastic deformation value. A analytical results provide useful information the optimal design of the porthole die for condenser tube.

  • PDF