• Title/Summary/Keyword: 커피찌꺼기

Search Result 25, Processing Time 0.026 seconds

Changes in Physical, Chemical, and Biological Traits During Composting of Spent Coffee Grounds (커피찌꺼기 퇴비화 과정의 물리, 화학 및 생물학적 변화)

  • Shin, Ji-Hwan;Park, Seung-Hye;Kim, A-Leum;Son, Yi-hun;Joo, Se-hwan
    • Korean Journal of Environmental Agriculture
    • /
    • v.39 no.3
    • /
    • pp.178-187
    • /
    • 2020
  • BACKGROUND: Spent coffee grounds are the most valuable resource for agriculture and industry. However, it is almost thrown untreated into landfills or incineration. Composting is an efficient process for converting spent coffee to fertilizer. METHODS AND RESULTS: Composting was conducted in the compost pile (40 ㎥) equipped with a forced aeration system. Physical and chemical properties containing temperature, pH, electrical conductivity, and moisture were measured through the composting period. Moreover, biological changes were examined for the composting phase using Illumina Miseq sequencing of the 16S rRNA gene. We found 7-14 phyla comprising 250-716 species from a variety phase of compost. During the composting period, Firmicutes were dominated, followed by Actinobacteria and Proteobacteria. CONCLUSION: The result indicated that the use of spent coffee improved the quality of organic fertilizer and changed the microbial communities, unique to the thermal composting stage, which could enhance the composting process. These findings suggest that spent coffee composted material can provide a significant amount of nutrients, thereby supporting plant growth.

Development of Material Separation Process for Recycling Waste Coffee Capsules (폐 커피 캡슐의 재활용을 위한 재질분리 공정 개발)

  • Baek, Sang-Ho;Han, Yosep;Kim, Seongmin;Davaadorj, Tsogchuluun;Jeon, Ho-Seok
    • Resources Recycling
    • /
    • v.30 no.3
    • /
    • pp.70-81
    • /
    • 2021
  • This study evaluated the recyclability of waste plastics in used coffee capsules disposed of as municipal waste. For recycling, a new material separation process was developed to remove the coffee grounds through primary crushing, washing, sieving, and secondary crushing, followed by corona discharge electrostatic separation. Furthermore, for the under 10 mm size fraction samples, the aluminum removal and the plastic recovery were 95.4% and 98.3%, respectively, under optimal conditions. In addition, for the 15 mm fraction samples, the aluminum removal and the plastic recovery were 91.3% and 97.2%, respectively. To evaluate the recyclability of the separated waste plastics, the samples were pelleted, and their material properties were analyzed. No hazardous substances were detected, and the results were similar to those for homo-PP. Therefore, it was confirmed tha t sufficient functiona lity existed a s recycled PP. However, owing to the da rk color of the pellets, limited applications to black or dark products are expected.

Efficiency Evaluation of Transition Metal-Based Additives for Efficient Thermochemical Conversion of Coffee Waste (커피찌꺼기의 효율적인 열화학 전환을 위한 전이 금속 기반 첨가제 효율 평가)

  • Cho, Dong-Wan;Jang, Jeong-Yun;Kim, Sunjoon;Yim, Gil-Jae
    • Journal of Soil and Groundwater Environment
    • /
    • v.27 no.1
    • /
    • pp.17-24
    • /
    • 2022
  • This work examined the effect of mixing transition metal-based additives [FeCl3, Fe-containing paper mill sludge (PMS), CoCl2·H2O, ZrO2, and α-Fe2O3] on the thermochemical conversion of coffee waste (CW) in carbon dioxide-assisted pyrolysis process. Compared to the generation amounts of syngas (0.7 mole% H2 & 3.0 mole% CO) at 700℃ from single pyrolysis of CW, co-pyrolysis in the presence of Fe- or Zr-based additives resulted in the enhanced production of syngas, with the measured concentrations of H2 and CO ranging 1.1-3.4 mole% and 4.6-13.2 mole% at the same temperature, respectively. In addition, α-Fe2O3 biochar possessed the adsorption capacity of As(V) (19.3 mg g-1) comparable to that of ZrO2-biochar (21.2 mg g-1). In conclusion, solid-type Fe-based additive can be highly considered as an efficient catalyst to simultaneously produce syngas (H2 & CO) as fuel energy resource and metal-biochar as sorbent.

Treatment Features of Ni Wastewater by using Coffee Grounds as the Adsorbent (커피 찌꺼기를 흡착제로 한 니켈 폐수 처리 특성)

  • Seo, Myung-Soon;Kim, Dong-Su
    • Journal of Korean Society on Water Environment
    • /
    • v.21 no.1
    • /
    • pp.14-20
    • /
    • 2005
  • A feasibility study has been conducted regarding the application of waste coffee grounds as an adsorbent for the treatment of nickel ion containing wastewater. The major variables which considered to influence the adsorbability of nickel ion were its initial concentration, reaction temperature, pH, and coexisting ion. The specific surface area of coffee grounds used in the experiment was found to be ca. $39.67m^2/g$, which suggesting its potential applicability as an adsorbent due to its relatively high surface area. In the experimental conditions, more than 90% of the initial amount of nickel ion was shown to adsorb within 15 minutes and equilibrium in adsorption was attained after 3 hours. The adsorption behavior of nickel ion was well explained by Freundlich model and kinetics study showed that the adsorption reaction was second-order. Adsorption was reduced with temperature and its change of enthalpy in standard state was estimated to be -807.05 kJ/mol. Arrhenius equation was employed for the calculation of the activation energy of adsorption and nickel ion was observed to adsorb on coffee grounds exoentropically based on thermodynamic estimations. As pH rose, the adsorption of nickel ion was diminished presumably due to the formation of cuboidal complex with hydroxide ion and the coexistence of cadmium ion was found to decrease the amount of nickel ion adsorption, which was proportional to the concentration of cadmium ion.

Extraction of Caffeine from Spent Coffee Grounds and Oxidative Degradation of Caffeine (커피 찌꺼기의 카페인 용출 및 산화분해 특성)

  • Shin, MinJeong;Kim, Young-Hun
    • Journal of Environmental Science International
    • /
    • v.27 no.12
    • /
    • pp.1205-1214
    • /
    • 2018
  • During the past few decades, significant increase in the consumption of coffee has led to rapid increase in the production of coffee waste in South Korea. Spent coffee waste is often treated as a general waste and is directly disposed without the necessary treatment. Spent Coffee Grounds (SCGs) can release several organic contaminants, including caffeine. In this study, leaching tests were conducted for SCGs and oxidative degradation of caffeine were also conducted. The tested SCGs contained approximately 4.4 mg caffeine per gram of coffee waste. Results from the leaching tests show that approximately 90% of the caffeine can be extracted at each step during sequential extraction. Advanced oxidation methods for the degradation of caffeine, such as $UV/H_2O_2$, photo-Fenton reaction, and $UV/O_3$, were tested. UV radiation has a limited effect on the degradation of caffeine. In particular, UV-A and UV-B radiations present in sunlight cause marginal degradation, thereby indicating that natural degradation of caffeine is minimal. However, $O_3$ can cause rapid degradation of caffeine, and the values of pseudo-first order rate constants were found to be ranging from $0.817min^{-1}$ to $1.506min^{-1}$ when the ozone generation rate was $37.1g/m^3$. Additionally, the degradation rate of caffeine is dependent on the wavelength of irradiation.