• Title/Summary/Keyword: 커터교체

Search Result 16, Processing Time 0.022 seconds

Case study: application of NAT (New Abrasion Tester) for predicting TBM disc cutter wear and comparison with conventional methods (TBM 디스크 커터 마모 예측에 대한 NAT의 현장 적용 및 기존 방법과의 비교)

  • Kim, Dae-Young;Shin, Young-Jin;Jung, Jae-Hoon;Kang, Han-Byul
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.6
    • /
    • pp.1091-1104
    • /
    • 2018
  • Wear prediction of TBM disc cutters is a very important issue during design as well as construction stages for hard rock TBMs as the cutter head intervention is directly related to the time and cost of tunneling. For that, some methods such as NTNU, CSM and Gehring models were used to predict disc cutter wear and intervention interval. There are however some problems to be addressed in these models in terms of accuracy and time for testing, so that a NAT (New Abrasion Tester) model has been developed in order to achieve simplicity and reliability together at the same time (Farrokh and Kim, 2018). On the basis, the proposed NAT model has been applied to ${\bigcirc}{\bigcirc}$ project in Korea. A comparative study was performed to compare with the conventional methods and as a result the NAT model showed a very good agreement with actual cutter life. The NAT model will be further applied to other projects to establish credibility.

Development of deep learning algorithm for classification of disc cutter wear condition based on real-time measurement data (실시간 측정데이터 기반의 디스크커터 마모상태 판별 딥러닝 알고리즘 개발)

  • Ji Yun Lee;Byung Chul Yeo;Ho Young Jeong;Jung Joo Kim
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.26 no.3
    • /
    • pp.281-301
    • /
    • 2024
  • The power cable tunnels which are part of the underground transmission line project, are constructed using the shield TBM method. The disc cutter among the shield TBM components plays an important role in breaking rock mass. Efficient tunnel construction is possible only when appropriate replacement occurs as the wear limit is reached or damage such as uneven wear occurs. A study was conducted to determine the wear conditions of disc cutter using a deep learning algorithm based on real-time measurement data of wear and rotation speed. Based on the results of full-scaled tunnelling tests, it was confirmed that measurement data was obtained differently depending on the wear conditions of disc cutter. Using real-time measurement data, an algorithm was developed to determine disc cutter wear characteristics based on a convolutional neural network model. Distributional patterns of data can be learned through CNN filters, and the performance of the model that can classify uniform wear and uneven wear through these pattern features.

Development of Microtunneling machine for Unmanned Cable-Tunnel (무인통신구(${\Phi}1000mm$)건설용 마이크로터널링 장비 개발)

  • Park Jung-Kwon;Seo Myung-Woo;Kim Jung-Yun
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2003.08a
    • /
    • pp.376-378
    • /
    • 2003
  • 본 논문에서는 2002년도에 KT에서 개발한 내경 1,000mm의 무인통신구를 건설 할 수 있는 마이크로터널링 장비에 대해 소개하고자 한다. 개발된 장비는 3D 기법을 이용한 최첨단 기법을 통하여 개발되었으며, 소형 굴진기의 취약점인 장애물 돌파능력을 보완하기 위하여 막장으로 진입이 가능한 구조로 되어있다. 따라서 굴진 중 장애물에 직면했을 경우 막장을 통하여 장애물을 효과적으로 제거할 수 있으며, 이 막장 진입통로를 이용하여 면판의 비트와 롤러커터를 교체할 수 있으므로 장거리 굴진이 가능하다. 그리고 굴진작업 시 필요한 원압잭과 후방설비인 Desander, 송 배니펌프등의 주변설비를 Operating Room에서 통합관리 할 수 있는 터널링 관리시스템을 개발하여 적용함으로써 보다. 효율적인 굴진관리를 수행할 수 있는 특징을 갖고 있다. 이렇게 개발된 장비와 시스템은 시험 시공을 통해 그 성능을 확인하였으며, 여기서 그 개발 과정 및 시험 시공 결과에 대해 기술하고자 한다.

  • PDF

A study on the machine load on shield advancing between soil ground and mix ground included core stone (토사지반과 핵석이 포함된 복합지반에서 쉴드TBM 굴진 시 장비부하에 관한 연구)

  • Kim, Ki-Hwan;Kim, Hyouk;Mun, Cheol-Hwa;Kim, Young-Hyu;Kim, Dong-Ho;Lee, Jae-Yong
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.6
    • /
    • pp.1039-1048
    • /
    • 2018
  • In urban tunnel construction, most of the Shield TBM method is applied to secure the safety of buildings and to minimize risks. On the other hand, in the urban development process, landfills are often embanked or improving in many cases, so that the boundary between the surface and the rock is often heterogeneous. In case of ground condition such as alluvial soil, granite, decomposed granite, core stone and rock with various layers, datas on shield TBM advancing according to each ground condition are analyzed, The characteristics of machine load were compared and analyzed. As a result, it can be predicted that the change of ground condition can be predicted by the tendency of discharge volume, thrust force and cutting wheel torque when the cutter is checked and replaced regularly on advancing under maintaining the design slurry pressure.

A Study on Advance Rate under the Operating Conditions of EPB Shield TBM Based on TBM Operation Data (현장 굴진자료 분석에 의한 토압식 쉴드 TBM의 운전조건과 굴진속도 연구)

  • An, Man Sun;Lim, Kwang-Su;Kim, Kyong Ju
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.6D
    • /
    • pp.839-848
    • /
    • 2011
  • TBM (Tunnel Boring Machine) tunnel should be carry out with the adopted machine until the end of excavation because of impossibility of replacement or modification of machine. Observation of the face of the tunnel is difficult, especially in EPB(Earth Pressure Balance) shield TBM, predict changes in the ground condition with analyzing data, collected during the excavation, and it should be reflected in construction. Until recently, subjects of studies on TBM are mainly the determination of machine and the development of advance rate prediction model, according to the characteristics of ground which is the target of excavation. However, study focused on the estimation of ground conditions and the improvement in operational methods using excavation data of TBM equipment, the principal of the excavation, has been done not so much. This study examine the variances in advance rate depending on changes in operating conditions and evaluate the optimal operating conditions of adopt machine, using working data obtained from EPB shield TBM project. The result of this study is suggested as follows. First, cutter head RPM and total thrust force are biggest influences on advance rate, Second, it is recommended for proper advance rate that total thrust force is controlled while optimum cutter head RPM is kept, Third, according to the increasing trend of total thrust force, the changes in ground conditions can be predicted, the appropriate operating conditions can be determined.

Improvement Plan of Excavation Performance Based on Shield TBM Performance Prediction Models and Field Data (쉴드 TBM 성능예측모델과 굴진자료 분석을 통한 굴진성능 개선방안)

  • Jung, Hyuksang;Kang, Hyoungnam;Choi, Jungmyung;Chun, Byungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.2
    • /
    • pp.43-52
    • /
    • 2010
  • Shield method is the tunnel boring method that propels a steel cylinder in the ground and excavates tunnels at once. After Marc Isambard Brunel started using the method for the Thames Riverbed Tunnel excavation in London, many kinds of TBM (Tunnel Boring Machine) developed and applied for the construction of road, railway, electricity channel, pipeline, etc. In comparison with NATM concept that allows to observe ground condition and copes with difficulty. The machine selected before starting construction is not able to be changed during construction in shield TBM. Therefore the machine should be designed based on the ground survey result and experiment, so that the tunnel might be excavated effectively by controlling penetration speed, excavation depth and cutter head speed according to the ground condition change. This research was conducted to estimate penetration depth, excavate speed, wear of disc cutter on Boondang Railway of the Han Riverbed Tunnel ground condition by TBM performance prediction models such as NTNU, $Q_{TBM}$, Total Hardness, KICT-SNU and compare the estimated value with the field data. The estimation method is also used to analyze the reason of poor excavation efficiency at south bound tunnel.