• Title/Summary/Keyword: 커뮤니티 탐지

Search Result 21, Processing Time 0.026 seconds

Spam Classification by Analyzing Characteristics of a Single Web Document (단일 문서의 특징 분석을 이용한 스팸 분류 방법)

  • Sim, Sangkwon;Lee, Soowon
    • Annual Conference of KIPS
    • /
    • 2014.11a
    • /
    • pp.845-848
    • /
    • 2014
  • 블로그는 인터넷에서 개인의 정보나 의견을 표출하고 커뮤니티를 형성하는데 사용되는 중요한 수단이나, 광고 유치, 페이지 순위 올리기, 쓰레기 데이터 생성 등 다양한 목적을 가진 스팸블로그가 생성되어 악용되기도 한다. 본 연구에서는 이러한 문제를 해결하기 위해 웹 문서에서 나타나는 특징들을 이용한 스팸 탐지 기법을 제안한다. 먼저 블로그 본문의 길이, 태그의 비율, 태그 수, 이미지 수, 랭크의 수 등 하나의 웹 문서에서 추출할 수 있는 특징을 기반으로 각 문서에 대한 특징 벡터를 생성하고 기계학습을 통해 모델을 생성하여 스팸 블로그를 판별한다. 제안 방법의 성능 평가를 위해 블로그 포스트 데이터를 사용하여 제안방법과 기존의 스팸 분류 연구를 비교 실험을 진행하였다. Bayesian 필터링 기법을 사용하는 기존연구와 비교 실험 결과, 제안방법이 더 좋은 정확도를 가지면서 특징 추출 속도 및 메모리 사용 효율성을 보였다.

A Novel Study on Community Detection Algorithm Based on Cliques Mining (클리크 마이닝에 기반한 새로운 커뮤니티 탐지 알고리즘 연구)

  • Yang, Yixuan;Peng, Sony;Park, Doo-Soon;Kim, Seok-Hoon;Lee, HyeJung;Siet, Sophort
    • Annual Conference of KIPS
    • /
    • 2022.11a
    • /
    • pp.374-376
    • /
    • 2022
  • Community detection is meaningful research in social network analysis, and many existing studies use graph theory analysis methods to detect communities. This paper proposes a method to detect community by detecting maximal cliques and obtain the high influence cliques by high influence nodes, then merge the cliques with high similarity in social network.

Evaluating the Performance of Hypergraph Embedding Methods According to Hypergraph Sparsity (하이퍼그래프 희소성에 따른 하이퍼그래프 임베딩 방법 성능 평가)

  • So-Bin Jung;David Y. Kang;Sang-Wook Kim
    • Annual Conference of KIPS
    • /
    • 2024.05a
    • /
    • pp.641-643
    • /
    • 2024
  • 실세계에서는 두개 이상의 객체들이 서로 관계를 맺고있다. 단 두 객체 간의 관계만 표현하는 그래프와는 달리 여러 객체들 간의 관계를 표현하는 하이퍼그래프는 그룹 상호작용을 잘 표현할 수 있다. 이러한 강점으로 하이퍼그래프를 활용한 응용들이 많이 제안되고 있다. 하이퍼그래프 임베딩은 하이퍼그래프의 구조를 이용하여 노드를 저차원 벡터로 표현하는 방법이다. 이렇게 표현된 벡터들은 노드 분류, 커뮤니티 탐지, 링크예측 등 광범위한 응용에 활용된다. 하지만 하이퍼그래프는 그래프보다 희소성 문제가 훨씬 더 심해 데이터 셋의 희소성이 하이퍼그래프 임베딩 방법의 성능에 큰 영향을 미칠 수 있다. 따라서, 본 논문에서는 희소성에 따른 하이퍼그래프 임베딩 방법들의 성능을 분석하고자 한다. 우리는 8 개의 실세계 데이터셋을 이용한 실험을 통해 데이터가 희소할수록 하이퍼그래프 임베딩 방법들의 성능이 감소하는 것을 확인하였다.

Comparing the 2015 with the 2022 Revised Primary Science Curriculum Based on Network Analysis (2015 및 2022 개정 초등학교 과학과 교육과정에 대한 비교 - 네트워크 분석을 중심으로 -)

  • Jho, Hunkoog
    • Journal of Korean Elementary Science Education
    • /
    • v.42 no.1
    • /
    • pp.178-193
    • /
    • 2023
  • The aim of this study was to investigate differences in the achievement standards from the 2015 to the 2022 revised national science curriculum and to present the implications for science teaching under the revised curriculum. Achievement standards relevant to primary science education were therefore extracted from the national curriculum documents; conceptual domains in the two curricula were analyzed for differences; various kinds of centrality were computed; and the Louvain algorithm was used to identify clusters. These methods revealed that, in the revised compared with the preceding curriculum, the total number of nodes and links had increased, while the number of achievement standards had decreased by 10 percent. In the revised curriculum, keywords relevant to procedural skills and behavior received more emphasis and were connected to collaborative learning and digital literacy. Observation, survey, and explanation remained important, but varied in application across the fields of science. Clustering revealed that the number of categories in each field of science remained mostly unchanged in the revised compared with the previous curriculum, but that each category highlighted different skills or behaviors. Based on those findings, some implications for science instruction in the classroom are discussed.

Dynamic Seed Selection for Twitter Data Collection (트위터 데이터 수집을 위한 동적 시드 선택)

  • Lee, Hyoenchoel;Byun, Changhyun;Kim, Yanggon;Lee, Sang Ho
    • Journal of KIISE:Databases
    • /
    • v.41 no.4
    • /
    • pp.217-225
    • /
    • 2014
  • Analysis of social media such as Twitter can yield interesting perspectives to understanding human behavior, detecting hot issues, identifying influential people, or discovering a group and community. However, it is difficult to gather the data relevant to specific topics due to the main characteristics of social media data; data is large, noisy, and dynamic. This paper proposes a new algorithm that dynamically selects the seed nodes to efficiently collect tweets relevant to topics. The algorithm utilizes attributes of users to evaluate the user influence, and dynamically selects the seed nodes during the collection process. We evaluate the proposed algorithm with real tweet data, and get satisfactory performance results.

Movie recommendation system using community detection based on label propagation (레이블 전파에 기반한 커뮤니티 탐지를 이용한 영화추천시스템)

  • Xinchang, Khamphaphone;Vilakone, Phonexay;Lee, Han-Hyung;Song, Min-Hyuk;Park, Doo-Soon
    • Annual Conference of KIPS
    • /
    • 2019.05a
    • /
    • pp.273-276
    • /
    • 2019
  • There is a lot of information in our world, quick access to the most accurate information or finding the information we need is more difficult and complicated. The recommendation system has become important for users to quickly find the product according to user's preference. A social recommendation system using community detection based on label propagation is proposed. In this paper, we applied community detection based on label propagation and collaborative filtering in the movie recommendation system. We implement with MovieLens dataset, the users will be clustering to the community by using label propagation algorithm, Our proposed algorithm will be recommended movie with finding the most similar community to the new user according to the personal propensity of users. Mean Absolute Error (MAE) is used to shown efficient of our proposed method.

API Similarity Comparison Tool Development for Detecting Theft of Android Application (안드로이드 앱 도용 탐지를 위한 API 유사도 비교 도구 구현)

  • Choi, Sung-Ha;Lee, Hyun-Young;Cho, Seung-Min;Park, Heewan
    • Annual Conference of KIPS
    • /
    • 2012.04a
    • /
    • pp.792-795
    • /
    • 2012
  • 최근 오픈 소스 커뮤니티가 활성화되고 수많은 오픈 소스들이 공개되고 있어서 많은 개발자들이 오픈 소스를 활용하고 있다. 그러나 오픈 소스도 정해진 라이선스 기반으로 공개되므로 오픈 소스를 사용할 때는 반드시 라이선스를 확인해야 한다. 본 논문에서는 안드로이드 앱의 라이선스 위반이나 코드 도용을 확인할 수 있는 방법으로서 안드로이드 앱 사이의 API 메소드 호출 유사도를 측정하는 방법을 제안한다. 원본 프로그램과 도용된 프로그램은 유사한 API 메소드를 사용할 것임을 예상할 수 있기 때문에 API 메소드 호출이 유사한 것을 확인하면 간접적으로 코드 도용을 확인할 수 있다. 본 논문에서 개발한 API 유사도 측정 도구는 안드로이드 앱의 소스 코드를 필요로 하지 않고, 안드로이드 달빅(Dalvik) 바이트 코드로부터 직접 API 호출 명령어를 분석하여 유사도를 측정한다는 특징이 있다. 본 논문에서 구현한 도구의 평가를 위해서 API 호출 유사도 비교 실험을 수행하였다. 그 결과, 실제로 API 호출 유사도가 높았던 두 앱이 서로 공통된 모듈을 포함하고 있음을 밝혀내었다. 그리고 선행 연구에서 제안했었던 안드로이드 달빅 코드 전체에 대한 유사도 비교 도구보다 비교 속도가 35% 정도 향상된 것을 확인하였다.

Movie Recommendation System using Community Detection and Parallel Programming (커뮤니티 탐지 및 병렬 프로그래밍을 이용한 영화 추천 시스템)

  • Sadriddinov Ilkhomjon;Yixuan Yang;Sony Peng;Sophort Siet;Dae-Young Kim;Doo-Soon Park
    • Annual Conference of KIPS
    • /
    • 2023.05a
    • /
    • pp.389-391
    • /
    • 2023
  • In the era of Big Data, humanity is facing a huge overflow of information. To overcome such an obstacle, many new cutting-edge technologies are being introduced. The movie recommendation system is also one such technology. To date, many theoretical and practical kinds of research have been conducted. Our research also focuses on the movie recommendation system by implementing methods from Social Network Analysis(SNA) and Parallel Programming. We applied the Girvan-Newman algorithm to detect communities of users, and a future package to perform the parallelization. This approach not only tries to improve the accuracy of the system but also accelerates the execution time. To do our experiment, we used the MovieLense Dataset.

Delivery Service Demand Analysis Using Social Network Analysis (SNA) (소셜 네트워크 분석(SNA)을 활용한 택배 서비스 수요 분석)

  • Kyungeun Oh;Sulim Kim;HanByeol Stella Choi;Heeseok Lee
    • Information Systems Review
    • /
    • v.24 no.4
    • /
    • pp.1-22
    • /
    • 2022
  • The transition to a non-face-to-face consumer society has rapidly occurred since Covid-19. The need for a subdivided urban logistics policy centered on courier delivery, a life-friendly last-mile logistics service, has been raised. This study proposes a SNS-based method that can analyze the demand relationship by region and product, respectively. We extend the market basket network (MBN) and co-purchased product network (CPN), find product category patterns, and confirm regional differences by using delivery order data. Our results imply that SNA analysis can be effectively applied to inventory distribution or product (SKU) selection strategies in urban logistics.

Categorizing Sub-Categories of Mobile Application Services using Network Analysis: A Case of Healthcare Applications (네트워크 분석을 이용한 애플리케이션 서비스 하위 카테고리 분류: 헬스케어 어플리케이션 중심으로)

  • Ha, Sohee;Geum, Youngjung
    • The Journal of Society for e-Business Studies
    • /
    • v.25 no.3
    • /
    • pp.15-40
    • /
    • 2020
  • Due to the explosive growth of mobile application services, categorizing mobile application services is in need in practice from both customers' and developers' perspectives. Despite the fact, however, there have been limited studies regarding systematic categorization of mobile application services. In response, this study proposed a method for categorizing mobile application services, and suggested a service taxonomy based on the network clustering results. Total of 1,607 mobile healthcare services are collected through the Google Play store. The network analysis is conducted based on the similarity of descriptions in each application service. Modularity detection analysis is conducted to detects communities in the network, and service taxonomy is derived based on each cluster. This study is expected to provide a systematic approach to the service categorization, which is helpful to both customers who want to navigate mobile application service in a systematic manner and developers who desire to analyze the trend of mobile application services.