블로그는 인터넷에서 개인의 정보나 의견을 표출하고 커뮤니티를 형성하는데 사용되는 중요한 수단이나, 광고 유치, 페이지 순위 올리기, 쓰레기 데이터 생성 등 다양한 목적을 가진 스팸블로그가 생성되어 악용되기도 한다. 본 연구에서는 이러한 문제를 해결하기 위해 웹 문서에서 나타나는 특징들을 이용한 스팸 탐지 기법을 제안한다. 먼저 블로그 본문의 길이, 태그의 비율, 태그 수, 이미지 수, 랭크의 수 등 하나의 웹 문서에서 추출할 수 있는 특징을 기반으로 각 문서에 대한 특징 벡터를 생성하고 기계학습을 통해 모델을 생성하여 스팸 블로그를 판별한다. 제안 방법의 성능 평가를 위해 블로그 포스트 데이터를 사용하여 제안방법과 기존의 스팸 분류 연구를 비교 실험을 진행하였다. Bayesian 필터링 기법을 사용하는 기존연구와 비교 실험 결과, 제안방법이 더 좋은 정확도를 가지면서 특징 추출 속도 및 메모리 사용 효율성을 보였다.
Community detection is meaningful research in social network analysis, and many existing studies use graph theory analysis methods to detect communities. This paper proposes a method to detect community by detecting maximal cliques and obtain the high influence cliques by high influence nodes, then merge the cliques with high similarity in social network.
실세계에서는 두개 이상의 객체들이 서로 관계를 맺고있다. 단 두 객체 간의 관계만 표현하는 그래프와는 달리 여러 객체들 간의 관계를 표현하는 하이퍼그래프는 그룹 상호작용을 잘 표현할 수 있다. 이러한 강점으로 하이퍼그래프를 활용한 응용들이 많이 제안되고 있다. 하이퍼그래프 임베딩은 하이퍼그래프의 구조를 이용하여 노드를 저차원 벡터로 표현하는 방법이다. 이렇게 표현된 벡터들은 노드 분류, 커뮤니티 탐지, 링크예측 등 광범위한 응용에 활용된다. 하지만 하이퍼그래프는 그래프보다 희소성 문제가 훨씬 더 심해 데이터 셋의 희소성이 하이퍼그래프 임베딩 방법의 성능에 큰 영향을 미칠 수 있다. 따라서, 본 논문에서는 희소성에 따른 하이퍼그래프 임베딩 방법들의 성능을 분석하고자 한다. 우리는 8 개의 실세계 데이터셋을 이용한 실험을 통해 데이터가 희소할수록 하이퍼그래프 임베딩 방법들의 성능이 감소하는 것을 확인하였다.
The aim of this study was to investigate differences in the achievement standards from the 2015 to the 2022 revised national science curriculum and to present the implications for science teaching under the revised curriculum. Achievement standards relevant to primary science education were therefore extracted from the national curriculum documents; conceptual domains in the two curricula were analyzed for differences; various kinds of centrality were computed; and the Louvain algorithm was used to identify clusters. These methods revealed that, in the revised compared with the preceding curriculum, the total number of nodes and links had increased, while the number of achievement standards had decreased by 10 percent. In the revised curriculum, keywords relevant to procedural skills and behavior received more emphasis and were connected to collaborative learning and digital literacy. Observation, survey, and explanation remained important, but varied in application across the fields of science. Clustering revealed that the number of categories in each field of science remained mostly unchanged in the revised compared with the previous curriculum, but that each category highlighted different skills or behaviors. Based on those findings, some implications for science instruction in the classroom are discussed.
Lee, Hyoenchoel;Byun, Changhyun;Kim, Yanggon;Lee, Sang Ho
Journal of KIISE:Databases
/
v.41
no.4
/
pp.217-225
/
2014
Analysis of social media such as Twitter can yield interesting perspectives to understanding human behavior, detecting hot issues, identifying influential people, or discovering a group and community. However, it is difficult to gather the data relevant to specific topics due to the main characteristics of social media data; data is large, noisy, and dynamic. This paper proposes a new algorithm that dynamically selects the seed nodes to efficiently collect tweets relevant to topics. The algorithm utilizes attributes of users to evaluate the user influence, and dynamically selects the seed nodes during the collection process. We evaluate the proposed algorithm with real tweet data, and get satisfactory performance results.
There is a lot of information in our world, quick access to the most accurate information or finding the information we need is more difficult and complicated. The recommendation system has become important for users to quickly find the product according to user's preference. A social recommendation system using community detection based on label propagation is proposed. In this paper, we applied community detection based on label propagation and collaborative filtering in the movie recommendation system. We implement with MovieLens dataset, the users will be clustering to the community by using label propagation algorithm, Our proposed algorithm will be recommended movie with finding the most similar community to the new user according to the personal propensity of users. Mean Absolute Error (MAE) is used to shown efficient of our proposed method.
최근 오픈 소스 커뮤니티가 활성화되고 수많은 오픈 소스들이 공개되고 있어서 많은 개발자들이 오픈 소스를 활용하고 있다. 그러나 오픈 소스도 정해진 라이선스 기반으로 공개되므로 오픈 소스를 사용할 때는 반드시 라이선스를 확인해야 한다. 본 논문에서는 안드로이드 앱의 라이선스 위반이나 코드 도용을 확인할 수 있는 방법으로서 안드로이드 앱 사이의 API 메소드 호출 유사도를 측정하는 방법을 제안한다. 원본 프로그램과 도용된 프로그램은 유사한 API 메소드를 사용할 것임을 예상할 수 있기 때문에 API 메소드 호출이 유사한 것을 확인하면 간접적으로 코드 도용을 확인할 수 있다. 본 논문에서 개발한 API 유사도 측정 도구는 안드로이드 앱의 소스 코드를 필요로 하지 않고, 안드로이드 달빅(Dalvik) 바이트 코드로부터 직접 API 호출 명령어를 분석하여 유사도를 측정한다는 특징이 있다. 본 논문에서 구현한 도구의 평가를 위해서 API 호출 유사도 비교 실험을 수행하였다. 그 결과, 실제로 API 호출 유사도가 높았던 두 앱이 서로 공통된 모듈을 포함하고 있음을 밝혀내었다. 그리고 선행 연구에서 제안했었던 안드로이드 달빅 코드 전체에 대한 유사도 비교 도구보다 비교 속도가 35% 정도 향상된 것을 확인하였다.
Sadriddinov Ilkhomjon;Yixuan Yang;Sony Peng;Sophort Siet;Dae-Young Kim;Doo-Soon Park
Annual Conference of KIPS
/
2023.05a
/
pp.389-391
/
2023
In the era of Big Data, humanity is facing a huge overflow of information. To overcome such an obstacle, many new cutting-edge technologies are being introduced. The movie recommendation system is also one such technology. To date, many theoretical and practical kinds of research have been conducted. Our research also focuses on the movie recommendation system by implementing methods from Social Network Analysis(SNA) and Parallel Programming. We applied the Girvan-Newman algorithm to detect communities of users, and a future package to perform the parallelization. This approach not only tries to improve the accuracy of the system but also accelerates the execution time. To do our experiment, we used the MovieLense Dataset.
Kyungeun Oh;Sulim Kim;HanByeol Stella Choi;Heeseok Lee
Information Systems Review
/
v.24
no.4
/
pp.1-22
/
2022
The transition to a non-face-to-face consumer society has rapidly occurred since Covid-19. The need for a subdivided urban logistics policy centered on courier delivery, a life-friendly last-mile logistics service, has been raised. This study proposes a SNS-based method that can analyze the demand relationship by region and product, respectively. We extend the market basket network (MBN) and co-purchased product network (CPN), find product category patterns, and confirm regional differences by using delivery order data. Our results imply that SNA analysis can be effectively applied to inventory distribution or product (SKU) selection strategies in urban logistics.
Due to the explosive growth of mobile application services, categorizing mobile application services is in need in practice from both customers' and developers' perspectives. Despite the fact, however, there have been limited studies regarding systematic categorization of mobile application services. In response, this study proposed a method for categorizing mobile application services, and suggested a service taxonomy based on the network clustering results. Total of 1,607 mobile healthcare services are collected through the Google Play store. The network analysis is conducted based on the similarity of descriptions in each application service. Modularity detection analysis is conducted to detects communities in the network, and service taxonomy is derived based on each cluster. This study is expected to provide a systematic approach to the service categorization, which is helpful to both customers who want to navigate mobile application service in a systematic manner and developers who desire to analyze the trend of mobile application services.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.