• Title/Summary/Keyword: 커뮤니티 기반 질의-응답 시스템

Search Result 3, Processing Time 0.014 seconds

Community based real time Q&A System (커뮤니티 기반의 실시간 질의응답 시스템)

  • Yoon, WonBeom;Lim, HeuiSeok
    • Annual Conference on Human and Language Technology
    • /
    • 2011.10a
    • /
    • pp.123-125
    • /
    • 2011
  • 본 논문은 스마트 디바이스와 소셜네트워크의 커뮤니티 기능을 활용하여 정보와 지식을 위한 실시간 질의응답 시스템을 제안한다. 정보와 지식의 양이 증가 하고 인터넷과 스마트 디바이스의 발전으로 인하여 지식검색의 필요성이 증대되고 있다. 하지만 현재 컴퓨터는 사용자의 질문을 정확히 이해하고 관련된 답변을 제공해주기 어렵다. 본 논문에서 제안하는 질의응답 시스템은 스마트 디바이스를 이용하고 SNS와 같이 커뮤니티 기반의 서비스를 적용한 실시간 커뮤니티형 질의응답 시스템이다. 사용자의 질문을 분석하여 관심사가 같은 사용자들을 그룹화 하고 관심사가 같은 사용자끼리 질문과 답변을 할 수 있는 서비스를 제공하여 질문과 답변을 효율적으로 주고받을 수 있다. 또한 사용자 피드백을 적용하여 사용자 랭킹을 보여줌으로써 사용자들의 답변률을 향상 시키고 스팸성 답변자에게 제한을 할 수 있는 시스템을 제안한다.

  • PDF

A Korean Community-based Question Answering System Using Multiple Machine Learning Methods (다중 기계학습 방법을 이용한 한국어 커뮤니티 기반 질의-응답 시스템)

  • Kwon, Sunjae;Kim, Juae;Kang, Sangwoo;Seo, Jungyun
    • Journal of KIISE
    • /
    • v.43 no.10
    • /
    • pp.1085-1093
    • /
    • 2016
  • Community-based Question Answering system is a system which provides answers for each question from the documents uploaded on web communities. In order to enhance the capacity of question analysis, former methods have developed specific rules suitable for a target region or have applied machine learning to partial processes. However, these methods incur an excessive cost for expanding fields or lead to cases in which system is overfitted for a specific field. This paper proposes a multiple machine learning method which automates the overall process by adapting appropriate machine learning in each procedure for efficient processing of community-based Question Answering system. This system can be divided into question analysis part and answer selection part. The question analysis part consists of the question focus extractor, which analyzes the focused phrases in questions and uses conditional random fields, and the question type classifier, which classifies topics of questions and uses support vector machine. In the answer selection part, the we trains weights that are used by the similarity estimation models through an artificial neural network. Also these are a number of cases in which the results of morphological analysis are not reliable for the data uploaded on web communities. Therefore, we suggest a method that minimizes the impact of morphological analysis by using character features in the stage of question analysis. The proposed system outperforms the former system by showing a Mean Average Precision criteria of 0.765 and R-Precision criteria of 0.872.

A Topic Classification System in cQA Services Based on Semi-Automatic Learning Using Wikipedia (위키피디아를 이용한 반자동 학습 기반의 cQA 서비스 주제 분류 시스템)

  • Kim, Taehyun
    • Annual Conference on Human and Language Technology
    • /
    • 2015.10a
    • /
    • pp.139-141
    • /
    • 2015
  • 본 논문은 커뮤니티 기반의 질의-응답 서비스에서 사용자 질의의 주제를 분류하는 시스템을 소개한다. 커뮤니티 기반의 질의-응답 서비스는 분야에 따라 다양한 주제를 가질 수 있으며 오늘 날 사용자 질의의 주제 분류에는 통계 기반의 분류 방법이 많이 이용되고 있다. 통계 기반의 분류 방법으로 사용자 질의를 분류하기 위해서는 주제에 적합한 대량의 학습 말뭉치가 필요하다. 주제에 적합한 대량의 학습 말뭉치를 사람이 직접 구축하는 것은 많은 시간과 비용이 든다. 따라서 본 논문에서는 이러한 문제를 해결하기 위해 위키피디아 문서를 Supervised K-means Clustering 기법으로 주제별로 분류함으로써 학습 말뭉치를 반자동으로 구축하는 방법을 제안한다. 그 다음, 생성된 학습 말뭉치로 지지 벡터 기계를 학습하여 사용자 질의의 주제를 분류하게 된다. 위키피디아 문서와 사용자 질의는 다른 도메인의 문서임에도 불구하고 본 논문의 시스템으로 사용자 질의의 주제를 분류한 결과 77.33%의 정확도를 보였다.

  • PDF