• Title/Summary/Keyword: 커뮤니케이션

Search Result 2,914, Processing Time 0.023 seconds

Structural Properties of Social Network and Diffusion of Product WOM: A Sociocultural Approach (사회적 네트워크 구조특성과 제품구전의 확산: 사회문화적 접근)

  • Yoon, Sung-Joon;Han, Hee-Eun
    • Journal of Distribution Research
    • /
    • v.16 no.1
    • /
    • pp.141-177
    • /
    • 2011
  • I. Research Objectives: Most of the previous studies on diffusion have concentrated on efficacy of WOM communication with the use of variables at individual level (Iacobucci 1996; Midgley et al. 1992). However, there is a paucity of studies which investigated network's structural properties as antecedents of WOM from the perspective of consumers' sociocultural propensities. Against this research backbone, this study attempted to link the network's structural properties and consumer' WOM behavior on cross-national basis. The major research objective of this study was to examine the relationship between network properties and WOM by comparing Korean and Chinese consumers. Specific objectives of this research are threefold; firstly, it sought to examine whether network properties (i.e., tie strength, centrality, range) affect WOM (WOM intention and quality of WOM). Secondly, it aimed to explore the moderating effects of cutural orientation (uncertainty avoidance and individuality) on the relationship between network properties and WOM. Thirdly, it substantiates the role of innovativeness as antecedents to both network properties and WOM. II. Research Hypotheses: Based on the above research objectives, the study put forth the following research hypotheses to validate. ${\cdot}$ H 1-1 : The Strength of tie between two counterparts within network will positively influence WOM effectivenes ${\cdot}$ H 1-2 : The network centrality will positively influence the WOM effectiveness ${\cdot}$ H 1-3 : The network range will positively influence the WOM effectiveness ${\cdot}$ H 2-1 : The consumer's uncertainty avoidance tendency will moderate the relationship between network properties and WOM effectiveness ${\cdot}$ H 2-2 : The consumer's individualism tendency will moderate the relationship between network properties and WOM effectiveness ${\cdot}$ H 3-1 : The consumer's innovativeness will positively influence the social network properties ${\cdot}$ H 3-2 : The consumer's innovativeness will positively influence WOM effectiveness III. Methodology: Through a pilot study and back-translation, two versions of questionnaire were prepared, one in Korean and the other in Chinese. The chinese data were collected from the chinese students enrolled in language schools in Suwon city in Korea, while Korean data were collected from students taking classes in a major university in Seoul. A total of 277 questionnaire were used for analysis of Korean data and 212 for Chinese data. The reason why Chinese students living in Korea rather than in China were selected was based on two factors: one was to neutralize the differences (ie, retail channel availability) that may arise from living in separate countries and the second was to minimize the difference in communication venues such as internet accessibility and cell phone usability. SPSS 12.0 and AMOS 7.0 were used for analysis. IV. Results: Prior to hypothesis verification, mean differences between the two countries in terms of major constructs were performed with the following result; As for network properties (tie strength, centrality and range), Koreans showed higher scores in all three constructs. For cultural orientation traits, Koreans scored higher only on uncertainty avoidance trait than Chinese. As a result of verifying the first research objective, confirming the relationship between network properties and WOM effectiveness, on Korean side, tie strength(Beta=.116; t=1.785) and centrality (Beta=.499; t=6.776) significantly influenced on WOM intention, and similar finding was obtained for Chinese side, with tie strength (Beta=.246; t=3.544) and centrality (Beta=.247; t=3.538) being significant. However, with regard to WOM argument quality, Korean data yielded only centrality (Beta=.82; t=7.600) having a significant impact on WOM, whereas China showed both tie strength(Beat=.142; t=2.052) and centrality(Beta=.348; t=5.031) being influential. To answer for the second research objective addressing the moderating role of cultural orientation, moderated regression anaylsis was performed and the result showed that uncertainty avoidance moderated between network range and WOM intention for both Korea and China, But for Korea, the uncertainty avoidance moderated between tie strength and WOM quality, while for China it moderated between network range and WOM intention. And innovativeness moderated between tie strength and WOM intention for Korea but it moderated between network range and WOM intention for China. As a result of analysing for third research objective, we found that for Korea, innovativeness positively influenced centrality only (Beta=.546; t=10.808), while for China it influenced both tie strength (Beta=.203; t=2.998) and centrality(Beta=.518; t=8.782). But for both countries alike, the innovativeness influenced positively on WOM (WOM intention and WOM quality). V. Implications: The study yields the two practical implications. Firstly, the result suggests that companies targeting multinational customers need to identify segments which are susceptible to the positive WOM and WOM information based on individual traits such as uncertainty avoidance and individualism and based on that, develop marketing communication strategy. Secondly, the companies need to divide the market on Roger's five innovation stages and based on this information, enforce marketing strategy which utilizes social networking tools such as public media and WOM. For instance, innovator and early adopters, if provided with new product information, will be able to capitalize upon the network advantages and thus add informational value to network operations using SNS or corporate blog.

  • PDF

A Study on the Various Attributes of E-Sport Influencing Flow and Identification (e-스포츠의 다양한 속성이 유동(flow)과 동일시에 미치는 영향에 관한 연구)

  • Suh, Mun-Shik;Ahn, Jin-Woo;Kim, Eun-Young;Um, Seong-Won
    • Journal of Global Scholars of Marketing Science
    • /
    • v.18 no.1
    • /
    • pp.59-80
    • /
    • 2008
  • Recently, e-sports are growing with potentiality as a new industry with conspicuous profit model. But studies that dealing with e-sports are not enough. Hence, proposes of this paper are both to establish basic model that is for the design of e-sport marketing strategy and to contribute toward future studies which are related to e-sports. Recently, the researches to explain sports-sponsorship through the identification theory have been discovered. Many researches say that somewhat proper identification is a requirement for most sponsors to improve the their images which is essential to sponsorship activity. Consequently, the research for sponsorship associated with identification in the e-sports, not in the physical sports is the core sector of this study. We extracted the variables from online's major characteristics and existing sport sponsorship researches. First, because e-sports mean the tournaments or leagues in the use of online game, the main event of the game is likely to call it online game. Online media's attributes are distinguished from those of offline. Especially, interactivity, anonymity, and expandibility as a e-sport game attributes are able to be mentioned. So, these inherent online attributes are examined on the relationship with flow. Second, in physical sports games, Fisher(1998) revealed that team similarity and team attractivity were positively related to team identification. Wann(1996) said that the result of former game influenced the evaluation of the next game, then in turn has an effect on the identification of team supporters. Considering these results in the e-sports side, e-sports gamer' attractivity, similarity, and match result seem to be important precedent variables of the identification with a gamer. So, these e-sport gamer attributes are examined on the relationship with both flow and identification with a gamer. Csikszentmihalyi(1988) defined the term flow as feeling status for him to be making current positive experience optimally. Hoffman and Novak(1996) also said that if a user experienced the flow he would visit a website without any reward. Therefore flow might be positively associated with user's identification with a gamer. And, Swanson(2003) disclosed that team identification influenced the positive results of sponsorship, which included attitude toward sponsors, sponsor patronage, and satisfaction with sponsors. That is, identification with a gamer expect to be connected with corporation identification significantly. According to the above, we can design the following research model. All variables used in this study(interactivity, anonymity, expandibility, attractivity, similarity, match result, flow, identification with a gamer, and identification with a sponsor) definitely were defined operationally underlying precedent researches. Sample collection was carried out to the person who has an experience to have enjoyed e-sports during June 2006. Much portion of samples is men because much more men than women enjoy e-sports in general. Two-step approach was used to test the hypotheses. First, confirmatory factor analysis was committed to guarantee the validity and reliability of variables. The results showed that all variables had not only intensive and discriminant validity, but also reliability. Then, research model was examined with fully structural equation using LISREL 8.3 version. The fitness of the suggested model mostly was at the acceptable level. Shortly speaking about the results, first of all, in e-sports game attributes, only interactivity which is called a basic feature in online situation affected flow positively. Secondly, in e-sports gamer's attributes, similarity with a gamer and match result influenced flow positively, but there was no significant effect in the relationship between the attractivity of a gamer and flow. And as expected, similarity had an effect on identification with a gamer significantly. But unexpectedly attractivity and match result did not influence identification with a gamer significantly. Just the same as the fact verified in the many precedent researches, flow greatly influenced identification with a gamer, and identification with a gamer continually had an influence on the identification with a sponsor significantly. There are some implications in these results. If the sponsor of e-sports supports the pro-game player who absolutely should have the superior ability to others and is similar to the user enjoying e-sports, many amateur gamers will feel much of the flow and identification with a pro-gamer, and then after all, feel the identification with a sponsor. Such identification with a sponsor leads people enjoying e-sports to have purchasing intention for products produced by the sponsor and to make a positive word-of-mouth for those products or the sponsor. For the future studies, we recommend a few ideas. Based on the results of this study, it is necessary to find new variables relating to the e-sports, which is not mentioned in this study. For this work to be possible, qualitative research seems to be needed to consider the inherent e-sport attributes. Finally, to generalize the results related to e-sports, a wide range of generations not a specific generation should be researched.

  • PDF

Structural features and Diffusion Patterns of Gartner Hype Cycle for Artificial Intelligence using Social Network analysis (인공지능 기술에 관한 가트너 하이프사이클의 네트워크 집단구조 특성 및 확산패턴에 관한 연구)

  • Shin, Sunah;Kang, Juyoung
    • Journal of Intelligence and Information Systems
    • /
    • v.28 no.1
    • /
    • pp.107-129
    • /
    • 2022
  • It is important to preempt new technology because the technology competition is getting much tougher. Stakeholders conduct exploration activities continuously for new technology preoccupancy at the right time. Gartner's Hype Cycle has significant implications for stakeholders. The Hype Cycle is a expectation graph for new technologies which is combining the technology life cycle (S-curve) with the Hype Level. Stakeholders such as R&D investor, CTO(Chef of Technology Officer) and technical personnel are very interested in Gartner's Hype Cycle for new technologies. Because high expectation for new technologies can bring opportunities to maintain investment by securing the legitimacy of R&D investment. However, contrary to the high interest of the industry, the preceding researches faced with limitations aspect of empirical method and source data(news, academic papers, search traffic, patent etc.). In this study, we focused on two research questions. The first research question was 'Is there a difference in the characteristics of the network structure at each stage of the hype cycle?'. To confirm the first research question, the structural characteristics of each stage were confirmed through the component cohesion size. The second research question is 'Is there a pattern of diffusion at each stage of the hype cycle?'. This research question was to be solved through centralization index and network density. The centralization index is a concept of variance, and a higher centralization index means that a small number of nodes are centered in the network. Concentration of a small number of nodes means a star network structure. In the network structure, the star network structure is a centralized structure and shows better diffusion performance than a decentralized network (circle structure). Because the nodes which are the center of information transfer can judge useful information and deliver it to other nodes the fastest. So we confirmed the out-degree centralization index and in-degree centralization index for each stage. For this purpose, we confirmed the structural features of the community and the expectation diffusion patterns using Social Network Serice(SNS) data in 'Gartner Hype Cycle for Artificial Intelligence, 2021'. Twitter data for 30 technologies (excluding four technologies) listed in 'Gartner Hype Cycle for Artificial Intelligence, 2021' were analyzed. Analysis was performed using R program (4.1.1 ver) and Cyram Netminer. From October 31, 2021 to November 9, 2021, 6,766 tweets were searched through the Twitter API, and converting the relationship user's tweet(Source) and user's retweets (Target). As a result, 4,124 edgelists were analyzed. As a reult of the study, we confirmed the structural features and diffusion patterns through analyze the component cohesion size and degree centralization and density. Through this study, we confirmed that the groups of each stage increased number of components as time passed and the density decreased. Also 'Innovation Trigger' which is a group interested in new technologies as a early adopter in the innovation diffusion theory had high out-degree centralization index and the others had higher in-degree centralization index than out-degree. It can be inferred that 'Innovation Trigger' group has the biggest influence, and the diffusion will gradually slow down from the subsequent groups. In this study, network analysis was conducted using social network service data unlike methods of the precedent researches. This is significant in that it provided an idea to expand the method of analysis when analyzing Gartner's hype cycle in the future. In addition, the fact that the innovation diffusion theory was applied to the Gartner's hype cycle's stage in artificial intelligence can be evaluated positively because the Gartner hype cycle has been repeatedly discussed as a theoretical weakness. Also it is expected that this study will provide a new perspective on decision-making on technology investment to stakeholdes.

Incorporating Social Relationship discovered from User's Behavior into Collaborative Filtering (사용자 행동 기반의 사회적 관계를 결합한 사용자 협업적 여과 방법)

  • Thay, Setha;Ha, Inay;Jo, Geun-Sik
    • Journal of Intelligence and Information Systems
    • /
    • v.19 no.2
    • /
    • pp.1-20
    • /
    • 2013
  • Nowadays, social network is a huge communication platform for providing people to connect with one another and to bring users together to share common interests, experiences, and their daily activities. Users spend hours per day in maintaining personal information and interacting with other people via posting, commenting, messaging, games, social events, and applications. Due to the growth of user's distributed information in social network, there is a great potential to utilize the social data to enhance the quality of recommender system. There are some researches focusing on social network analysis that investigate how social network can be used in recommendation domain. Among these researches, we are interested in taking advantages of the interaction between a user and others in social network that can be determined and known as social relationship. Furthermore, mostly user's decisions before purchasing some products depend on suggestion of people who have either the same preferences or closer relationship. For this reason, we believe that user's relationship in social network can provide an effective way to increase the quality in prediction user's interests of recommender system. Therefore, social relationship between users encountered from social network is a common factor to improve the way of predicting user's preferences in the conventional approach. Recommender system is dramatically increasing in popularity and currently being used by many e-commerce sites such as Amazon.com, Last.fm, eBay.com, etc. Collaborative filtering (CF) method is one of the essential and powerful techniques in recommender system for suggesting the appropriate items to user by learning user's preferences. CF method focuses on user data and generates automatic prediction about user's interests by gathering information from users who share similar background and preferences. Specifically, the intension of CF method is to find users who have similar preferences and to suggest target user items that were mostly preferred by those nearest neighbor users. There are two basic units that need to be considered by CF method, the user and the item. Each user needs to provide his rating value on items i.e. movies, products, books, etc to indicate their interests on those items. In addition, CF uses the user-rating matrix to find a group of users who have similar rating with target user. Then, it predicts unknown rating value for items that target user has not rated. Currently, CF has been successfully implemented in both information filtering and e-commerce applications. However, it remains some important challenges such as cold start, data sparsity, and scalability reflected on quality and accuracy of prediction. In order to overcome these challenges, many researchers have proposed various kinds of CF method such as hybrid CF, trust-based CF, social network-based CF, etc. In the purpose of improving the recommendation performance and prediction accuracy of standard CF, in this paper we propose a method which integrates traditional CF technique with social relationship between users discovered from user's behavior in social network i.e. Facebook. We identify user's relationship from behavior of user such as posts and comments interacted with friends in Facebook. We believe that social relationship implicitly inferred from user's behavior can be likely applied to compensate the limitation of conventional approach. Therefore, we extract posts and comments of each user by using Facebook Graph API and calculate feature score among each term to obtain feature vector for computing similarity of user. Then, we combine the result with similarity value computed using traditional CF technique. Finally, our system provides a list of recommended items according to neighbor users who have the biggest total similarity value to the target user. In order to verify and evaluate our proposed method we have performed an experiment on data collected from our Movies Rating System. Prediction accuracy evaluation is conducted to demonstrate how much our algorithm gives the correctness of recommendation to user in terms of MAE. Then, the evaluation of performance is made to show the effectiveness of our method in terms of precision, recall, and F1-measure. Evaluation on coverage is also included in our experiment to see the ability of generating recommendation. The experimental results show that our proposed method outperform and more accurate in suggesting items to users with better performance. The effectiveness of user's behavior in social network particularly shows the significant improvement by up to 6% on recommendation accuracy. Moreover, experiment of recommendation performance shows that incorporating social relationship observed from user's behavior into CF is beneficial and useful to generate recommendation with 7% improvement of performance compared with benchmark methods. Finally, we confirm that interaction between users in social network is able to enhance the accuracy and give better recommendation in conventional approach.