• 제목/요약/키워드: 커널 회귀

검색결과 67건 처리시간 0.027초

기계학습 모델을 활용한 일일 최대 전력 수요 분석 (Daily maximum power demand analysis using machine learning model)

  • 이태호;김민우;이병준;김경태;윤희용
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2019년도 제60차 하계학술대회논문집 27권2호
    • /
    • pp.157-158
    • /
    • 2019
  • 발전소 관리의 단기 전력 수요에 대한 정확한 예측은 전력 시스템의 안전하고 효율적인 작동을 보장하는데 필수적이다. 따라서 본 연구는 가우스 커널 함수 네트워크 (GKFNs)의 심층 구조를 이용하여 일일 최대 전력 수요를 예측하는 새로운 방법을 제시한다. 제안 된 GKFN의 깊이 구조는 표준 GKFN에 비해 예측 정확도를 향상시킨다. 한국의 일일 최대 전력 수요를 예측하기위한 시뮬레이션은 제안 된 예측 모델이 GKFN 모델, k-NN 및 SVR과 같은 다른 예측 모델에 비해 예측 성능에 이점이 있음을 보여준다. GKFN의 제안된 심층 구조는 시계열 예측 및 회귀 문제의 다양한 문제에 적용될 수 있다.

  • PDF

준지도 학습의 모수 선택에 관한 연구 (Smoothing parameter selection in semi-supervised learning)

  • 석경하
    • Journal of the Korean Data and Information Science Society
    • /
    • 제27권4호
    • /
    • pp.993-1000
    • /
    • 2016
  • 반응 값이 없는 자료를 지도학습 (supervised learning)에 사용하는 준지도 학습 (semi-supervised learning)은 분류에 더 많은 관심을 갖는다. 본 연구는 준지도학습을 회귀분석에 적용하는 준지도 회귀함수 추정법을 제안한다. 제안된 방법은 기존의 방법과 형태는 같지만 반응 값이 있는 자료와 없는 자료의 주변분포를 다르게 가정하고, 서로 다른 평활계수를 사용하는 등 좀 더 일반화된 형태를 가진다. 제안된 추정법의 점근분포를 계산하고 점근평균제곱오차를 최소화하는 최적의 평활계수가 가지는 조건을 찾는다. 설명변수의 주변분포에 대한 추정이 잘 이루이지고, 반응 값이 있는 자료와 없는 자료의 크기에 대한 조건을 적절하게 통제할 수 있고, 그리고 평활계수가 적절하게 선택될 수 있다면 라벨없는 자료가 회귀분석에서도 도움을 줄 수 있음을 보인다. 그리고 준지도 분류에서 사용하는 것처럼 반응 값이 없는 자료의 초기추정은 작은 값을 가지는 평활계수를 사용하여 과적합 (overfitting)되도록 하는 것이 좋음을 증명한다.

Support Vector Machines를 이용한 교각주위 국부세굴 예측 (Prediction of Local Scour around Bridge Piers using Support Vector Machines)

  • 최성욱;최성욱
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2016년도 학술발표회
    • /
    • pp.57-61
    • /
    • 2016
  • 교각 주위에서의 국부세굴은 교각을 지나는 유체의 복잡한 흐름에 의해 발생한다. 이를 해석하기 위하여 많은 난류모형을 이용한 실내실험 및 수치실험을 수행하였으나 발생하는 와류를 하천 규모에서 전부 계산하기는 매우 어려운 문제다. 따라서 국부세굴 관련으로 최대 관심사인 최대 세굴심은 인공지능 기술에 근거한 다양한 기법을 적용해 계산하여 예측하기도 한다. 본 연구에서는 기계학습 분야 중 하나인 서포트 벡터 머신 (Support Vector Machines)을 이용하여 교각주위 국부세굴을 예측하였다. SVM은 본래 초평면을 이용하여 데이터를 분류시키는 기법이나 Vapnik(1995)이 제안한 ${\varepsilon}$ 서포트 벡터 회귀 (${\varepsilon}$-support vector regression)방법을 통해 회귀분석에도 활용할 수 있게 되었다. 학습을 위해 Charbert and Engeldinger (1956), Shen et al. (1969), Jain and Fischer (1979), 그리고 Dey et al. (1995)의 실험 자료를 이용하였고 검증을 위해 Yanmaz and Altinbilek (1991)의 실험 자료를 이용하였다. 커널함수로는 다항식 함수와 방사 기저 함수를 이용하였고 각 계수는 적합한 값을 찾기 위해 시행착오법을 사용하였다. 민감도 분석을 통해 각 계수들 중 ${\varepsilon}$의 변화가 결과에 가장 민감하게 변화를 일으키는 것을 확인하였고 검증 결과 SVM가 충분히 국부세굴을 잘 예측하는 것을 확인하였다.

  • PDF

원자력 발전소 배관 감육 측정데이터의 개선된 전처리 방법 개발 (Development of the Modified Preprocessing Method for Pipe Wall Thinning Data in Nuclear Power Plants)

  • 문성빈;이상훈;오영진;김성렬
    • 한국압력기기공학회 논문집
    • /
    • 제19권2호
    • /
    • pp.146-154
    • /
    • 2023
  • In nuclear power plants, ultrasonic test for pipe wall thickness measurement is used during periodic inspections to prevent pipe rupture due to pipe wall thinning. However, when measuring pipe wall thickness using ultrasonic test, a significant amount of measurement error occurs due to the on-site conditions of the nuclear power plant. If the maximum pipe wall thinning rate is decided by the measured pipe wall thickness containing a significant error, the pipe wall thinning rate data have significant uncertainty and systematic overestimation. This study proposes preprocessing of pipe wall thinning measurement data using support vector machine regression algorithm. By using support vector machine, pipe wall thinning measurement data can be smoothened and accordingly uncertainty and systematic overestimation of the estimated pipe wall thinning rate data can be reduced.

베지에 곡선을 이용한 함수의 미분에 대한 비모수적 추정 (Nonparametric estimation of the derivative of function via the Bezier curve)

  • 김충락;정미선;김형순
    • 응용통계연구
    • /
    • 제11권1호
    • /
    • pp.193-204
    • /
    • 1998
  • 주어진 자료를 회귀모형에 적합시켜 적합된 함수의 미분을 구해야 하는 경우가 흔히 있다. 본 논문에서는 베지에 곡선을 이용하여 비모수적으로 추정하는 방법을 소개하고, 실제 자료에 적용시킨다. 이 방법의 장점은 원하는 차수의 미분이 가능할 뿐만 아니라, 비모수 추정에 따르는 커널의 선택과정이 필요없고 단지 평활모수만 선택하면 된다.

  • PDF

유전알고리즘과 커널 부분최소제곱회귀를 이용한 반도체 공정의 가상계측 모델 개발 (Development of Virtual Metrology Models in Semiconductor Manufacturing Using Genetic Algorithm and Kernel Partial Least Squares Regression)

  • 김보건;염봉진
    • 산업공학
    • /
    • 제23권3호
    • /
    • pp.229-238
    • /
    • 2010
  • Virtual metrology (VM), a critical component of semiconductor manufacturing, is an efficient way of assessing the quality of wafers not actually measured. This is done based on a model between equipment sensor data (obtained for all wafers) and the quality characteristics of wafers actually measured. This paper considers principal component regression (PCR), partial least squares regression (PLSR), kernel PCR (KPCR), and kernel PLSR (KPLSR) as VM models. For each regression model, two cases are considered. One utilizes all explanatory variables in developing a model, and the other selects significant variables using the genetic algorithm (GA). The prediction performances of 8 regression models are compared for the short- and long-term etch process data. It is found among others that the GA-KPLSR model performs best for both types of data. Especially, its prediction ability is within the requirement for the short-term data implying that it can be used to implement VM for real etch processes.

상관계수 가중법을 이용한 커널회귀 방법 (Kernel Regression with Correlation Coefficient Weighted Distance)

  • 신호철;박문규;이재용;류석진
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년 학술대회 논문집 정보 및 제어부문
    • /
    • pp.588-590
    • /
    • 2006
  • Recently, many on-line approaches to instrument channel surveillance (drift monitoring and fault detection) have been reported worldwide. On-line monitoring (OLM) method evaluates instrument channel performance by assessing its consistency with other plant indications through parametric or non-parametric models. The heart of an OLM system is the model giving an estimate of the true process parameter value against individual measurements. This model gives process parameter estimate calculated as a function of other plant measurements which can be used to identify small sensor drifts that would require the sensor to be manually calibrated or replaced. This paper describes an improvement of auto-associative kernel regression by introducing a correlation coefficient weighting on kernel distances. The prediction performance of the developed method is compared with conventional auto-associative kernel regression.

  • PDF

형용사구에서의 관계추출 개선을 위한 의존구문트리의 최소공동조상 (LCA) 변경 (Altering LCA of dependency parse trees for improving relation extraction from adjective clauses)

  • 이대석;맹성현
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2018년도 제30회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.552-556
    • /
    • 2018
  • 본 논문에서는 텍스트에서 개체(entity) 간 관계(relation) 추출 문제에서 의존구문트리를 이용하여 자질을 추출할 때 형용사구 내에 관계가 나타나는 경우의 성능을 향상시키는 방법을 제안한다. 일률적으로 의존구문트리의 최소공동조상(LCA: Least Common Ancestor)을 이용하는 일반적인 방법보다 형용사구가 나타날 때는 형용사구의 술어를 대신 이용하는 것이 더 좋은 자질이 된다는 것을 제안하고 로지스틱 회귀분석, SVM(linear), SVM(exponential kernel)을 이용한 실험들을 통해 그 효과를 확인하였다. 이는 트리커널을 이용한 것과 같이 의존구문트리의 최소공동조상이 주요한 역할을 하는 관계추출 모델들의 성능을 높일 수 있음을 보여 준다. 수행한 실험 과정을 통해 관계추출 데이터 셋에서 형용사구 내 관계를 포함하는 문장이 전체에서 차지하는 비율이 낮을 경우 생길 수 있는 문제를 추가적으로 얻을 수 있었다.

  • PDF

선형 평활스플라인 함수 추정과 적용 (A Linear Smoothing Spline Estimation and Applications)

  • 윤용화;김경무;김종태
    • Journal of the Korean Data and Information Science Society
    • /
    • 제9권1호
    • /
    • pp.29-36
    • /
    • 1998
  • 본 논문은 Eubank (1994, 1997)에 의해 이론적으로 제안된 선형 평활스플라인 추정량에 대한 알고리즘을 개발함으로 선형 스플라인의 추정을 보다 쉽고 효율적으로 사용할 수 있도록 하는데 목적이 있다. 이 알고리즘을 이용하여 여러가지 모형의 예들에 대하여 추정량의 적합성을 조사하였고, 제시된 선형 평활스플라인 추정량이 비모수 함수 추정의 도구로서 잘 적합됨을 알 수 있었다.

  • PDF

데이터 마이닝 기반 스마트 공장 에너지 소모 예측 모델 (An Energy Consumption Prediction Model for Smart Factory Using Data Mining Algorithms)

  • ;이명배;임종현;김유빈;신창선;박장우;조용윤
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제9권5호
    • /
    • pp.153-160
    • /
    • 2020
  • 산업용 에너지 소비 예측은 에너지 수요와 공급에 동적이고 계절적인 변화가 있기 때문에 에너지 관리 및 제어 시스템에서 중요한 위치를 차지한다. 본 논문은 철강 산업의 에너지 소비 예측 모델을 제시하고 논의한다. 사용되는 데이터에는 후행 및 선도적인 전류 반응 전력, 후행 및 선도적인 전류 동력 계수, 이산화탄소(TCO2) 배출 및 부하 유형이 포함된다. 테스트 세트에서는 (a) 선형 회귀(LR), (b) 방사형 커널(SVM RBF), (c) Gradient Boosting Machine (GBM), (d) 무작위 포리스트(RF). 평균 제곱 오차(RMSE), 평균 절대 오차(MAE) 및 평균 절대 백분율 오차(ME)의 네 가지 통계 모델을 사용하여 예측하고 평가한다. 회귀 설계의 효율성 모든 예측 변수를 사용할 때 최상의 모델 RF는 테스트 세트에서 RMSE 값 7.33을 제공할 수 있다.