• Title/Summary/Keyword: 캡핑

Search Result 24, Processing Time 0.03 seconds

Sand Capping for Controlling Phosphorus Release from Lake Sediments (호소 저니의 인 용출 제어를 위한 모래 캡핑)

  • Kim, Geonha;Jeong, Woohyeok;Choe, Seunghee
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.1B
    • /
    • pp.125-130
    • /
    • 2006
  • In this research, possibility of sand capping was experimentally evaluated to control phosphorus release from lake sediment into water body. Three acrylic columns without and with 40 and 80 mm of sand capping were prepared. Phosphorus concentrations of overlying water in these columns were measured. Performances of sand capping were evaluated for 0, 40, and 80 mm of capping thickness by measuring DO, ORP, TP, and $PO_4$-P. For the case without capping, the releasing rate of total phosphorus was higher and dissolved oxygen decreased faster, comparing with those of columns with capping. Total phosphorus concentrations in overlying water were inversely proportional to capping thickness, while phosphate concentration showed no significant differences between both cases. The experiment results suggested that sand capping is effective to retard total phosphorus release from sediment.

Impact of Thickness of Sand Capping on Phosphorus Release Rate from Sediment (모래 캡핑 두께가 퇴적물 인 용출에 미치는 영향)

  • Jeong, Woo-Hyeok;Kim, Geon-Ha
    • Korean Journal of Ecology and Environment
    • /
    • v.39 no.3 s.117
    • /
    • pp.331-339
    • /
    • 2006
  • This research was carried out to understand the impacts of thickness of sand capping to control phosphorus release from sediment into overlying water. As capping effectively retards release flux, phosphorus concentration in water body can be maintained if phosphorus release rate was kept under microbial degradation rate. With capping thickness increases, deaeration rate become less, while reaeration coefficient become higher. Phosphorus release rate and capping thickness were linearly correlated. The results of regression analysis indicated that phosphorus release can be controlled effectively by sand capping of least 20${\sim}$40 mm thickness.

Speciation of Phosphorus Dependent upon pH and Oxidation Reduction Potential in Overlying Water and Sediment (pH와 산화환원전위에 따른 상등수-퇴적물에서의 인 형태 변화)

  • Jung, Woo-Hyeok;Kim, Geon-Ha
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.5
    • /
    • pp.472-479
    • /
    • 2006
  • In this research, speciation of phosphorus in sediment and overlying water dependent upon pH and ORP(Oxidation Reduction Potential) was studied. Three possible conditions were simulated: open system with circulation, closed system with stratification and closed system with sand capping on the sediment. Phosphorus release rate from sediment was increased for both open system and closed system if pH was less than 6.0. Phosphorus concentration for closed system was increased from 0.9 mg/L to 0.51 mg/L, and stabilized at 0.34 mg/L if anaerobic conditions were maintained in the overlying water. When sand capping was implemented, phosphorus concentrations of overlying water were maintained less than those of closed system.

An Experimental Study on the Effect of Capping Type of Cylindrical Concrete Specimen on Compressive Strength (원주형 콘크리트 공시체의 캡핑종류별 압축강도 영향)

  • 이상완;김수만;백승종;김광돈;이평석
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10a
    • /
    • pp.167-172
    • /
    • 2000
  • There are a variety of factors affecting measured compressive strength of hardened concrete. One of them is the end surface condition of concrete specimen. So, many capping methods have been developed for the specimen to meet the end condition requirement of ASTM C 39. A series of experimental strength comparison study was carried out using several representative capping methods, including pad capping method which is one of unbonded elastomeric capping system and was newly adopted in the ASTM standard. A comparison was also focused on their economy, convenience, harmfulness, etc.

  • PDF

인라인 캐핑머신용 오실레이팅 암 기구부의 개발

  • 오상엽;배용환
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.219-219
    • /
    • 2004
  • 지금까지 식품, 약품 및 음료 산업 등에서 내용물을 충전 후 밀봉하기 위한 방법이 다양하게 개발되어 사용되고 있으며, 특히 뚜껑을 체결하는 인라인 캐핑머신(In-line capping machine)은 포장 공정에 필수적인 장치이다. 이와 같은 장치의 설계 시 고려되어야 할 사항으로서 작업 공정이 연속적인데 있다. 또한, 어느 한 제품을 용기에 채운 후 완전한 상품으로 조립하기까지, 캐핑머신의 신뢰성은 공정의 연속성과 생산성을 좌우하기 때문에 매우 중요한 요소이다.(중략)

  • PDF

Consolidation Settlement of Capped Sediment (I): Centrifuge Simulation by Modeling of Models Technique (캡이 설치된 퇴적층의 압밀 침하 (I) : 원심모형시험기를 이용한 모델링 방법)

  • Kim, Tae-Hyung;Hong, Won-Pyo;Moo-Young, Horace-K
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.3
    • /
    • pp.33-38
    • /
    • 2003
  • Marine sediment capping is a technique where clean sand is placed over contaminated sediment to reduce the migration of contaminants to the environment. The design of in-situ caps placed over marine sediment must take into consideration the self-weight consolidation of the cap and the consolidation of the sediment as a result of adding the cap layer. Centrifuge tests were adopted to simulate the effects of consolidation settlement of capped marine sediment caused by the placement of a clean sand layer. The modeling of models technique was utilized to verify the correct modeling procedures used in this study. Two centrifuge tests were conducted with the same boundary conditions at different gravitational accelerations of 100 g and 50 g. There was good agreement between these tests. It can be concluded that the centrifuge experiment is able to model consolidation settlement of capped marine sediment.

Long-Term Effect of Consolidation on Contaminant Transport (압밀이 오염물질 이동에 미치는 장기적 영향)

  • Lee, Jang-Guen;Kim, Do-Yoon;Park, Jae-Woo
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.1
    • /
    • pp.35-40
    • /
    • 2011
  • Dredging and disposal is a conventional method to remove contaminated sediments. However, there are some problems in dredging and disposal, such as disturbance of contaminated sediments, disposal site determination, and high construction cost. Recently, in-situ capping which overcomes the problems of dredging and disposal is widely applied to isolate local contaminated sites. Numerical studies, which have been conducted to simulate contaminant transport during in-situ capping, have been concerned mainly with diffusive transport. However, contaminated sediments experience large strain consolidation induced by self-weight because of initially high moisture content of sediments, and contaminant transport results from advection and diffusion. Previous studies focus on contaminant transport during consolidation, but have neglected consolidation effect on long-term contaminant transport in sediments. This study presents numerical simulation results of consolidation effect on long-term contaminant transport in sediments.

Management and Remediation Technologies of Contaminated Sediment (오염퇴적물 관리방향 및 처리공법)

  • Kim, Geon-Ha;Jeong, Woo-Hyeok
    • Journal of Soil and Groundwater Environment
    • /
    • v.12 no.3
    • /
    • pp.1-9
    • /
    • 2007
  • As Total Maximum Daily Load program is being implemented, needs for the management and treatment of contaminated sediment are rising to attain cleaner water resources. In this paper, impacts and management methods of contaminated sediment were reviewed. Remediation technologies for contaminated sediment including dredging, natural attenuation, in situ solidification/stabilization, in situ biological remediation, in situ chemical remediation and capping were reviewed. Integrated remediation scheme was presented as well.

Utilization of Centrifuge Test in Geoenvironmental Engineering: Consolidation and Contaminant Transport at Capped Dredged Sediment (원심모형실험의 지반환경공학적 이용: 캡핑된 준설퇴적토의 압밀과 오염원 이동)

  • Kim, Tae-Hyung;Kang, Ki-Min;Lee, Jeong-Woo;Jung, Su-Jung
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.1060-1067
    • /
    • 2006
  • Sandy soils are generally used as a capping material to reduce the pollutants transport from the contaminated dredged sediment. However, dredged material capping is not widely used because regulatory agencies are concerned about the potential for contaminants migration through the cap. Movement of contaminated pore water from sediment into cap is mainly related to sediment consolidation during and after cap placement. To evaluate the significance of consolidation induced transport of contaminants from sediment into cap, research centrifuge tests were conducted. Centrifuge test results illustrate that advection and dispersion are the dominant contaminants transport processes and that capping reduces the potential of contaminant migration from the dredged sediment effectively.

  • PDF