• Title/Summary/Keyword: 캠 형상 설계

Search Result 44, Processing Time 0.023 seconds

CAD System Development for Geometric Design and Motion Analysis of Tangential Cam (접선 캠의 형상설계 및 운동해석을 위한 CAD시스템 개발)

  • 조성철;송정섭
    • Journal of the Korean Society of Safety
    • /
    • v.10 no.3
    • /
    • pp.42-46
    • /
    • 1995
  • To purpose of this study is to model design and motion analysis of tangential cam mechanism using personal computer system. The CAD(Computer Aided Design) system used in this study was constructed with CPU(Central Processing Unit) 80486, RAM(Random Access Memory) 8M, CGA graphic card. By using developed program for tangential cam mechanism, we designed tangential cam models and analysed displacement, velocity, acceleration of follower.

  • PDF

A Study on Design of Barrel Cam Using Relative Velocity (상대속도를 이용한 바렐 캠의 설계에 관한 연구)

  • Shin, Joong-Ho;Kim, Sung-Won;Kang, Dong-Woo;Yoon, Ho-Eop
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.8
    • /
    • pp.47-54
    • /
    • 2002
  • A barrel cam is used as a very important part of an index drive unit. The index drive unit must have an intermittent-rotational motion. The barrel typed cam and roller gear mechanism has the advantages of high reliability to perform a prescribed motion of a follower. This paper proposes a new method for the shape design of the barrel cam and also a CAD program is developed by using the proposed method. As defined in this paper, the relative velocity method for the shape design calculates the relative velocity of the follower versus cam at a center of roller, and then determines a contact point by using the geometric relationships and the kinematic constraints, where the direction of the relative velocity must be parallel to a common tangential line at the contact point of two independent bodies, i.e. the cam and the follower Then, the shape of the cam is defined by the coordinate transformation of the trace of the contact points. This paper presents two examples for the shape design of the barrel cam in order to prove the accuracy of the proposed methods.

A Study on Shape Design of Cylindrical Cam with Rotating Roller Follower in Roller-Gear-Cam Mechanism (롤러기어캠 기구를 위한 회전운동형 롤러 종동절을 가진 원통 캠의 형상 설계에 관한 연구)

  • Sin, Jung-Ho;Gang, Dong-U;Yun, Ho-Eop
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.8
    • /
    • pp.1527-1533
    • /
    • 2002
  • When a mechanism transfers a motion to an intersected shaft, a cylindrical cam mechanism may be the best choice among the mechanisms. The cylindrical cam with a roller follower provides to transfer the motions to the intersect shafts simply without other connecting equipments of the intersect shafts. Typical example may be a roller-gear-cam mechanism. But the shape of the cam must be exactly defined in order to satisfy the conditions for the prescribed motion of the follower. This paper proposes a new method for the shape design of the cylindrical cams and also a CAD program is developed by using the proposed method. The relative velocity method calculates the relative velocity of the follower versus the cam at a center of roller, and then determines a contact point by using the geometric relationships and the kinematic constraints. The constraint used in the relative velocity method is that the relative velocity must be parallel to a common tangent line at the contact point of two independent bodies, i. e. the cam and the follower. Then, the shape of the cam is defined by the coordinate transformation of the trace of the contact points. Finally, this paper presents an example in order to prove the accuracy of the proposed methods in this paper and the application of the CAD program"CamDesign".

Aerodynamic Design Optimization of Airfoils for WIG Craft Using Response Surface Method (반응표면법을 이용한 지면효과익기 익형의 공력 설계최적화)

  • Kim, Yang-Joon;Joh, Chang-Yeol
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.5
    • /
    • pp.18-27
    • /
    • 2005
  • Airfoils with improved longitudinal static stability were designed for a WIG craft through aerodynamic design optimization. The response surface method is coupled with NURBS-based shape functions and Navier-Stokes flow analysis. The procedure runs in the network-distributed design framework of commercial-code based automated design capability to enhance computational efficiency and robustness.Lift maximization design maintaining similar static margin to a DHMTU airfoil successfully produced a new airfoil shape characterized by pronounced front-loading and the well-known reflexed aft-camber line. Another airfoil design of lower variation in pitching moment during take-off showed weakened front-loaded characteristics and hence decreased lift slightly. Investigations using the present design methodology on an existing optimization result based on potential flow analysis and NACA-type geometry generation demonstrated significance of carrying various geometry generations and more realistic flow analysis with optimization.

Kinematic Analysis of Levering Systems in Compound Bows (컴파운더 보우 지레 시스템의 기구학적 해석)

  • Lee, Yong-Sung;Kim, Hong Seok;Cheong, Seong-Kyun;Choi, Ung-Jae;Kim, Young-Keun;Park, Kyung-Rea;Shin, Ki-Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.1
    • /
    • pp.55-60
    • /
    • 2013
  • Compound bows use levering systems consisting of cables and cam pulleys to bend limbs that are much stiffer than those of recurve bows, thus storing more energy while requiring less force for the archer to hold the bow at a fully drawn position. Many patents have thus far been proposed to improve the efficiency and performance of compound bows through empirical methods, whereas only a few analytical methods have been proposed. In this light, this paper presents a method for the kinematic analysis of levering systems in compound bows so that a designer can easily predict the effects of changes in the cam profiles and limb materials.

Shape Design of the 3-Way Valve used in Marine Diesel Engines (LDCL JWCS) by CFD Analysis (유동해석을 통한 선박용 디젤엔진(LDCL JWCS)의 3-Way Valve 형상 설계)

  • Hwang, Gi Ung;Kwak, Hyo Seo;Kim, Jae Yeol;Eom, Tae Jin;Kim, Chul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.11
    • /
    • pp.1077-1084
    • /
    • 2017
  • Camshaft engines designed for constant engine loads have been applied to existing marine diesel engines. However, due to environmental regulations, electro-hydraulic servo mechanisms, which have a loaddependent cylinder liner jacket water cooling system (LDCL-JWCS), have been recently developed to individually control the temperature of the cylinders depending on the engine load. In this system, the 3-way valve, which prevents low temperature corrosion by reducing the temperature difference between the upper and lower parts of the cylinder, has been employed, but the outlet mass flow of the existing valve is low. In this study, the design of the internal shape of the 3-way valve was performed by analyzing the effects of the design parameters of the valve shape on the performance (i.e., the outlet mass flow rate and temperature). The proposed model was verified by comparing its performance to that of existing marine diesel engine valves.

Herschel-Bulkley모델을 이용한 그리이스 열탄성유체윤활 문제의 수치해석

  • 유진규;김경웅
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1994.06a
    • /
    • pp.56-64
    • /
    • 1994
  • 탄성유체윤활 (elastohydrodynamic lubrication : EHL)이론은 구름 베어링, 기어 및 캠기구 등과 같이 집중 하중을 받는 기계 요소에서의 윤활 현상을 설명하는 이론으로서, 윤활부분에서 금속 접촉이 발생하지 않도록 기계요소를 설계하기 위하여 필요한 최소유막두께를 결정하는 데 사용된다. 그리이스는 대표적인 윤활제로서 구름 베어링의 윤활에 있어서 중요한 위치를 점하고 있다. 현재 집중 하중을 받는 기계 요소의 윤활에는 윤활 구조의 간편화, 보수의 용이성, 먼지나 이물의 침입 방지 등에 유리한 그리이스 윤활의 사용이 확대되고 있다. 현재 전동기, 가정용 전기기기, 측정기 등에 쓰이는 구름 베어링의 경우는 거의 전량 그리이스 윤활이 사용되고 있다. 지금까지의 연구는 유동특성상의 복잡성 때문에 무한장 선접촉 등온 EHL 문제에 대한 해석이었고, 아직까지는 그리이스 윤활 TEHL 해석에 관한 연구는 발표된 바 없다. 본 연구에는 Herschel-Bulkley 모델 그리이스 EHL문제를 열탄성유체윤활해석하여 보다 정확한 접촉부의 압력분포와 유막형상을 예측하고자 한다.

  • PDF

Cam Profile Design for Precision Positioning (정밀위치결정을 위한 캠 형상 설계)

  • 이종호;이종길;김병희;전병희
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.05a
    • /
    • pp.204-209
    • /
    • 2003
  • Cam mechanisms are one of the most popular devices for generating intermittent motion and are widely used in many areas. Also, as being interested in research of precision field, cam mechanism is required high accuracy and continuity, In. In this paper, the cam mechanism of filament automatic assembly machine design for precision motion is proposed. The modelling of a cam mechanism, cam profile functions, and the design of the cam considering the precision positioning of the cam mechanism is studied. And, simulation of designed cam mechanism had been carried out dynamic analysis.

  • PDF

A Study on the Development of CAD/CAM System for High Precision Cam Profile CNC Grinding Machine (고 정밀 캠 프로파일 CNC 연삭기용 CAD/CAM 시스템 개발에 관한 연구)

  • Lim, Sang-Heon;Jung, Jong-Yun;Lee, Choon-Man
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.15 no.5
    • /
    • pp.44-50
    • /
    • 2006
  • Cam mechanisms are one of the most popular devices for generating irregular motion and are widely used in many automatic equipments, such as textile machinery, internal combustion engines and other automatic devices. In order to obtain the positive motion of follower by rotating cam, its shape should be correctly designed and manufactured. In present paper, a CAD/CAM system is developed for shape design of disk cams using relative velocity method and NC code generation using the biarc curve interpolation. And, a disk cam is successfully manufactured by the developed CAD/CAM system. Thus, it is shown that the developed CAD/CAM system can be used for high precision cam profile CNC grinding machine.

A Study on Stability for Traverse Cam of Twising Machine using Shape Design Method of Relative Velocity and Modified Displacement Curves (상대속도에 의한 형상설계법과 개선된 변위선도에 의한 연사기용 Traverse Cam의 안정성에 관한 연구)

  • Kim, Jong-Su;Yun, Ho-Eop
    • 연구논문집
    • /
    • s.31
    • /
    • pp.101-112
    • /
    • 2001
  • A Twisting machine is to twist yarns for improving yarn stiffness. After twisting yarns, the twisting machine is winding yarn at a bobbin. Traverse cam is main part of winding yarn part. In other to improve twisting machine performance and stability, improve traverse cam part. Original displacement curves of traverse cam has two problems. One is that displacement curve has a vertex point the other is that velocity curve is discontinue point. So that, in this paper proposes a modified displacement curves of traverse cam and new shape design method of the traverse cam using the relative velocity method[1]. The relative velocity method calculates the relative velocity of the follower versus the cam at a center of roller, and then determines a contact point by using the geometric relationship and the kinematical constraints. Finally, we present to compare two designed cam. One is designed using original displacement curves the other is using modified displacement curve.

  • PDF