• Title/Summary/Keyword: 캘리포니아 I/M 프로그램

Search Result 2, Processing Time 0.019 seconds

Identifying Key Factors to Affect Vehicle Inspection and Maintenance(I/M) Test Results Using a Binary Logit Model (California Case Study) (이항로짓모형을 이용한 자동차 배출가스 검사결과에 미치는 요인분석(미국 캘리포니아 사례를 중심으로))

  • Chu, Sang-Ho
    • Journal of Korean Society of Transportation
    • /
    • v.24 no.3 s.89
    • /
    • pp.189-195
    • /
    • 2006
  • For the past decades, vehicle emissions has been a major source of air pollution in urban areas Vehicle inspection and maintenance (I/M) test programs were developed for major metropolitan areas to reduce urban air pollution. However. there are a few studies of exploring major factors to influence I/M test failure. This study develops a logit model to identify key factors affecting overall test failure, using the vehicle I/M test data from California in October 2002. The model results indicate that vehicle age, odometer reading, engine size, vehicle make, presences of emissions control equipment, and test types have significant effects on the probability of I/M test failure.

Modification of Insect Sodium Currents by a Pyrethroid Permethrin and Positive Cooperativity with Scorpion Toxins (피레스로이드계 살충제 퍼메트린이 Heliothis virescens 중추신경세포에 있는 나트륨채널에 작용하는 기작을 전기생리학적으로 연구)

  • Lee, Daewoo;Adams, Michael E.
    • Korean journal of applied entomology
    • /
    • v.61 no.1
    • /
    • pp.117-128
    • /
    • 2022
  • In this study, we have examined pyrethroid actions on sodium channels in the pest insect Heliothis virescens. The synthetic pyrethroid permethrin increased steady-state sodium current in H. virescens central neurons and prolonged tail currents (INa-tail) due to extreme slowing of sodium channel deactivation. Prolongation of INa-tail was evident at permethrin concentrations as low as 60 nM, which modified ~1.7% of sodium channels and 10 μM permethrin modified about 30% of channels. The average time constant (τ1) of tail current decay was ~335 ms for permethrin-modified channels. These modified channels activated at more negative potentials and showed slower activation kinetics, and failed to inactivate. Permethrin modification of sodium channels was dramatically potentiated by the α scorpion toxin LqhαIT, showing positive cooperativity between two binding sites. The amplitude of the tail current induced by 0.3 μM permethrin was enhanced ~8-fold by LqhαIT (200 pM). Positive cooperativity was also observed between permethrin and the insect-specific scorpion toxin AaIT as 10 nM permethrin potentiated the shift of voltage dependence caused by AaIT (~2-fold).