• Title/Summary/Keyword: 캐스케이드냉동사이클

Search Result 14, Processing Time 0.017 seconds

A Simulation Study on the Cascade Refrigeration Cycle for the Liquefaction of Natural Gas [1] (천연가스 액화를 위한 캐스케이드 냉동사이클의 전산모사에 대한 연구 [1])

  • Kim, So-Hee;Cho, Jung-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.1
    • /
    • pp.552-558
    • /
    • 2011
  • In this paper, simulation works for a cascade refrigeration cycle using propane, ethylene and methane as a refrigerant have been performed for the liquefaction of natural gas using Peng-Robinson equation of state built-in PRO/II with PROVISION release 8.3. The natural gas feed compositions were supplied from Korea Gas Corporation and the flow rate was assumed to be 5.0 million tons per annual. Supply temperature for propane refrigerant was fixed as $-40^{\circ}C$, that for ethylene refrigerant as $-95^{\circ}C$, and that for methane refrigerant as $-155^{\circ}C$. Natural gas was finally cooled and liquefied to $-162^{\circ}C$ by Joule-Thomson expansion. Conclusively, 91.64% by mole of the natural gas liquefaction ratio was obtained through a cascade refrigeration cycle and Joule-Thomson expansion.

Performance comparison of cascade refrigerator and two-stage compression refrigerator (캐스케이드 냉동시스템과 2단 압축 1단 팽창식 냉동 시스템의 성능 비교)

  • Son, Chang-Hyo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.2
    • /
    • pp.625-631
    • /
    • 2014
  • In order to obtain a low evaporation temperature ranging from $-30^{\circ}C{\sim}-50^{\circ}C$, a cascade refrigeration system and two-stage compression one-stage expansion refrigeration system is required. However, the research results of performance comparison of these refrigeration system are very scarce. This paper were compared the performance characteristics of R744-R404A cascade refrigeration system and R404A two-stage compression refrigeration system. The COP of R404A two-stage compression refrigeration system is about 36~57% greater than that of R744-R404A cascade refrigeration system in the range of evaporation temperature of $-30^{\circ}C{\sim}-50^{\circ}C$. But R404A two-stage compression refrigeration system is unstable because COP is significantly changed when evaporating temperature and compressor efficiency decreased. In particular, when compressor efficiency decreased, COP is significantly decreased. In this case, not efficient for long-term use. Whereas R744-R404A cascade refrigeration system using natural refrigerants. Therefore, it is environmentally friendly. And this system is high-efficiency refrigeration system. The reason it can be configured by selecting the suitable refrigerant at high-temperature side and low-temperature side. From the above results, select the appropriate low temperature refrigeration system by considering the environmental and performance aspects.

Efficiency and Exergy Analysis of New Liquefaction Cycles Applied for LNG FPSO (LNG FPSO에 적용가능한 신액화 사이클의 효율 및 엑서지 분석)

  • Yoon, Jung-In;Son, Chang-Hyo;Baek, Seung-Moon;Kwag, Jin-Woo;Shim, Gyu-Jin
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.5
    • /
    • pp.574-579
    • /
    • 2012
  • This paper presents the new cascade liquefaction cycles using $CO_2-C_2H_6-N_2$ and $CO_2-N_2$. The performance and exergy of cascade liquefaction cycles are analyzed using HYSYS software and then confirmed the possibility of these cycles for LNG-FPSO ship. From the comparison of performance and exergy loss of these cycles, the cascade liquefaction cycles using $CO_2-C_2H_6-N_2$ showed higher performance and the cycle using $CO_2-N_2$ presented higher exergy loss. The cascade liquefaction cycle using $CO_2-N_2$ is lower efficiency and higher compressor work compared to the optimized cascade liquefaction cycle using $C_3H_8-C_2H_4-C_1H_4$. But, if the efficiency of $N_2$ cycle in these liquefaction cycles is improved, it is possible to apply the cascade liquefaction cycle using $CO_2-C_2H_6-N_2$ and $CO_2-N_2$ to LNG-FPSO ship due to the simple composition device of these cycles.

Prediction on Maximum Performance of Cascade Refrigeration System Using R717 and R744 (R718-R744용 캐스케이드 냉동시스템의 최대 성능 예측)

  • Roh, Geun-Sang;Son, Chang-Hyo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.10
    • /
    • pp.2565-2571
    • /
    • 2009
  • In this paper, cycle performance analysis of cascade refrigeration system using $NH_3-CO_2$(R717-R744) is presented to offer the basic design data for the operating parameters of the system. The operating parameters considered in this study include subcooling and superheating degree and condensing and evaporating temperature in the ammonia(R717) high temperature cycle and the carbon dioxide low temperature cycle. The COP of cascade refrigeration system increases with the increasing superheating degree, but decreases with the increasing subcooling degree. The COP of cascade refrigeration system increases with the increasing condensing temperature, but decreases with the increasing evaporating temperature. Therefore, superheating and subcoolng degree, evaporating and condensing temperature of cascade refrigeration system using $NH_3-CO_2$ have an effect on the COP of this system. A multilinear regression analysis was employed in terms of subcooling, superheating, evaporating, condensing, and cascade heat exchanger temperature difference in order to develop mathematical expressions for maximum COP and an optimum evaporating temperature.