본 논문에서는 비선형 기동표적의 추적에 대한 새로운 접근 방식을 소개한다. 제안된 알고리즘은 예측 명중위치 개념을 이용한 칼만필터 기반의 적응 상호작용 다중모델 기법으로 측정된 위치 값과 예측된 명중위치 사이의 차이를 고려한 변형된 칼만필터 기법을 이용한다. 알 수 없는 가속도는 표적의 기동모델에 있어서 추가적인 프로세스 잡음으로 간주되고, 알고리즘 내의 하부 모델들은 각각의 가속도 수준에 따라 구해지는 전체적인 프로세스 잡음에 따라 특성화 된다. 칼만필터 기법이 비선형 기동에 있어 성능이 저하되는 점을 보완하기 위하여 상황에 따라 제안된 기법과 칼만필터를 적응적으로 이용할 수 있는 선택적 알고리즘을 구현하고자 한다. 표적의 기동중에 나타나는 가속도를 효과적으로 다루기 위하여 잡음의 크기가 급격히 증가할 경우 그 증가분을 가속도로 인식하여 기동표적 관계식에 이용한다. 그리고 제안된 알고리즘의 수행 가능성은 몇 가지수치 예를 통하여 증명한다.
본 논문은 상태변수 평준화 및 되먹임구조를 이용하여 무인잠수정의 위치추정을 개선하기 위한 다중센서 융합 기반의 위치추정 알고리즘을 제안한다. 이를 위해 먼저 상대적으로 오차가 큰 주 센서인 INS와 오차가 작은 보조센서인 DVL에서 측정되는 상태변수를 예측단계 이전에 융합하여 상태변수 평준화 과정을 수행한다. 그 다음, 평준화된 상태변수를 각 필터에 입력하여 예측 및 수정단계의 칼만 필터링 과정을 통해 최종 수정된 상태변수를 융합시키며, 마지막으로 이를 다시 주센서에 되먹임함으로서 무인잠수정의 위치추정을 개선한다. 평가를 위해 무인잠수정의 기동모델에 대한 시뮬레이션을 실시하여 기동경로를 생성하고 제안 알고리즘을 적용하여 위치추정 성능을 확인한다. 평가 결과, 제안 알고리즘이 다중센서 융합 알고리즘 중 가장 우수한 위치추정 성능을 보였으며, 또한 기동침로가 변경되는 구간에서도 강인한 위치추정이 가능하다는 것이 증명되었다.
3개 혹은 그 이상의 고정노드로 구성된 다변측량법은 실내의 실시간 위치 인식 시스템 분야에서 현재 널리 사용되고 있다. 하지만 이 고정노드 중 일부가 장애물 및 고정노드의 불안정에 따라 통신도달성이 결여된 상황에서는 효율적 위치 정보를 획득하기가 어렵다. 이러한 환경에서 위치측정 결여 및 변동을 개선하기위하여 본 논문에서는 TOF(Time of Flight)기반으로 이동노드의 변위 추정을 위한 벡터예측알고리즘과 효율적인 거리평균을 위한 칼만필터를 이용하여 기존의 다변측량법에서 발생하는 내재적 위치측정오차를 줄일 수 있는 새로운 알고리즘을 제안한다. 보행자가 이동노드와 함께 이동하고 임의의 고정노드로부터 거리측정이 실패하더라도, 현재 및 이전 거리측정 값을 이용하는 제안한 알고리즘은 이동노드와 거리측정에 실패한 고정노드 사이의 거리를 예측할 수 있다. 실험결과 기존의 방법 대비 위치추정 성능과 효율이 향상됨을 확인하였다.
모바일 로봇은 다양한 환경에서 임무를 수행하기 때문에 산업 분야에서 크게 활용되고 있다. 모바일 로봇이 작업을 수행하기 위해서는 경로를 생성하고 장애물을 탐지하기 때문에 실시간으로 로봇의 정확한 위치를 파악하는 것은 중요하다. 특히, 실내 환경에서 자율주행하는 모바일 로봇은 주어진 일을 정해진 영역에서 수행할 때, 보다 정밀한 측위 성능이 요구된다. 모바일 로봇은 무선통신 환경에서 송수신 데이터의 손실이 빈번히 발생하며, 데이터 손실 발생 시 예측 기술을 통해 로봇 스스로 자신의 위치를 파악하여 임무 수행을 이어 나가야 한다. 본 논문에서는 모바일 로봇의 위치 추정 정확도를 향상시키고, 데이터 손실 문제를 해결하고자 확장 칼만 필터 기반의 알고리즘을 제안한다. 삼변측량은 해당 순간에만 측정한 값을 사용하여 측위 성능이 부정확한 반면, 제안한 알고리즘은 데이터 손실 환경에서 예측 측정값의 잔차를 이용하기 때문에 모바일 로봇의 정밀한 위치 추정이 가능하다. 제안한 알고리즘의 우수한 성능 검증을 위하여 데이터 손실이 없는 환경과 데이터 손실 환경에서 모바일 로봇의 시뮬레이션을 수행하였다.
무인 주행 차량에 있어서, 포장 또는 비포장 도로의 시각적 추적은 매우 중요한 문제중의 하나이다. 따라서, 비디오 이미지로부터 비포장 도로를 추적할 수 있는 신속한 비젼 알고리즘의 개발이 필요하다. 이 논문에서는 칼만 필터와 EM(Expectation Maximization) 이론을 이용해 도로를 예측하고 시스템 파라미터를 갱신하는 방법을 제시한다. 시스템 파라미터, 도로 state, 도로 경계선, 그리고 모든 과거 데이터들을 각각 EM 파라미터, hidden data, incomplete data와 complete data로 정의함으로서 도로 state를 예측하고 시스템 파라미터를 추정할 수 있는 시간 회귀적 수식을 유도해 낼 수 있다. 이러한 방법을 이용하여 도로 state는 칼만 필터에 의해 매 프레임마다 예측되며, 시스템 파라미터들은 주기적으로 갱신되는 것이다. 결과적으로 이 방법은 주변환경과 날씨에 많은 영향을 받는 도로의 모양과 특징을 잘 찾아낼 수 있다. 또한 도로의 다음 state를 예측할 수 있는 점을 이용하면 계산량을 줄일 수 있으므로 실시간 구현에 용이하다. 이와 같은 방법으로 우리는 0.1 sec/frame 처리속도를 보장하는 도로추적 시스템을 구현하였다.
본 논문에서는 리튬 폴리머 배터리($LiFePO_4/C$)의 개방전압(OCV;open-circuit voltage) 히스테리시스 특성을 이용한 확장 칼만 필터(EKF;extended Kalman filter) 기반 state-of-charge(SOC) 추정방법을 소개한다. 배터리 등가회로의 중요 요소인 OCV 모델링을 위해 충전 및 방전 각각의 OCV 히스테리시스 특성을 고려하였고 더불어 OCV-SOC 관계의 SOC 간격을 10%에서 5%로 조정하여 EKF 기반 SOC 추정알고리즘의 성능이 향상되었다. 축소된 하이브리드 자동차용 전류프로파일을 적용했을 때 SOC 추정이 잘 이루어지지 않는 영역은 EKF의 측정방정식에 노이즈 모델 및 데이터 리젝션(data rejection)을 구축하였다. 제안된 방법을 이용하여 SOC 추정결과 전류적산법 대비 5%이내의 SOC 추정에러를 만족하였다.
복잡한 문제 학습을 위해 여러 가지 형태의 모듈라 네트워크의 구조가 제시되어 왔다. 그 중 엑스퍼트 네트워크와 게이팅 네트워크로 구성된 Mixtures of Experts network은 복잡한 문제를 단순한 문제들로 분해하고, 각각의 엑스퍼트 네트워크가 분해된 단순한 문제를 학습하여 결과를 도출함으로써, 국소적 지역해의 위험을 방지하고 보다 정확한 학습을 가능하게 한다. 그러나 엑스퍼트 네트워크의 수렴은 게이팅 네트워크의 수렴에 많은 영향을 받게 되고, 모든 복잡한 데이터에 대한 엑스퍼트 네트워크의 기여도를 학습하는 게이팅 네트워크는 역전파 알고리즘에 의한 학습 방법으로는 수렴 속도가 떨어진다. 본 논문에서는 게이팅 네트워크를 칼만필터로 학습하여 복잡한 문제에 대한 강건성은 유지하고 보다 빠른 수렴이 가능한 방법을 제시하고자한다.
본 논문에서는 연속영상 속에 있는 얼굴영역을 칼만 필터를 이용하여 추적하는 방법을 제안한다. 제안된 방법은 영역-기반접근(region-based approach)방법인 워터쉐드 알고리즘을 이용하여 초기 영역 분할 작업을 한 후 얼굴칼라 모델과의 매칭작업을 통해서 얼굴영역을 찾아내는 얼굴검출 단계와 추출된 얼굴영역의 칼라정보를 칼만 필터의 입력으로 하여 얼굴을 추적하는 단계로 구성되어 있다. 실험결과를 통하여 제안된 방법이 배경이 복잡한 영상에 대해서도 효율적으로 얼굴을 추적할 수 있음을 보인다.
본 논문에서는 판소리 자동채보에 중요한 요소인 '합'과 '궁'의 위치 즉 마디를 인공신경망과 히스토그램을 이용하여 추정한다. 기존의 합과 궁을 추정하는 방법으로는 NCC(Normalized Cross Correlation)를 이용한 대표치 추정 윈도우와 칼만 필터를 이용하였다. 하지만 대표치 추정 윈도우를 구성하는 과정에서 단순히 15개의 특징벡터 각각의 평균을 이용하기 때문에 분별력이 떨어지고, 마디위치를 보정하는 과정에서 칼만 필터를 사용하면 전체음원이 길이가 짧을 경우 오차가 발생할 가능성이 크다. 본 논문에서 제안한 마디 추정 알고리즘은 장단별로 최대 90%이상의 정확도로 마디를 추정할 수 있다.
한국항해항만학회 2006년도 International Symposium on GPS/GNSS Vol.2
/
pp.475-478
/
2006
본 논문에서는 소형 무인항공기의 정확한 위치, 속도, 자세 정보를 제공하기 위해 저급의 MEMS IMU를 이용한 항법 시스템을 제안한다. 제안하는 시스템은 비행체의 직선운동과 회전운동을 측정할 수 있는 관성측정기와 위성신호를 수신하여 항체의 위치, 속도 정보를 제공하는 GPS 수신기, 지구 자기장 정보를 이용하여 방향각 정보를 제공하는 지자기 센서들로 구성되었다. SDINS와 약결합 방식의 칼만필터를 이용한 항법 시스템은 초기정렬 알고리즘과 센서 오차 보상 알고리즘, 자력계 보상 알고리즘 및 복합항법 알고리즘으로 나뉘며, 설계된 항법 알고리즘들은 시뮬레이션과 차량 실험을 통해서 성능을 분석하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.