• Title/Summary/Keyword: 칼리브레이션 추정

Search Result 3, Processing Time 0.02 seconds

Integrated calibration weighting using complex auxiliary information (통합 칼리브레이션 가중치 산출 비교연구)

  • Park, Inho;Kim, Sujin
    • The Korean Journal of Applied Statistics
    • /
    • v.34 no.3
    • /
    • pp.427-438
    • /
    • 2021
  • Two-stage sampling allows us to estimate population characteristics by both unit and cluster level together. Given a complex auxiliary information, integrated calibration weighting would better reflect the level-wise characteristics as well as multivariate characteristics between levels. This paper explored the integrated calibration weighting methods by Estevao and Särndal (2006) and Kim (2019) through a simulation study, where the efficiency of those weighting methods was compared using an artificial population data. Two weighting methods among others are shown efficient: single step calibration at the unit level with stacked individualized auxiliary information and iterative integrated calibration at each level. Under both methods, cluster calibrated weights are defined as the average of the calibrated weights of the unit(s) within cluster. Both were very good in terms of the goodness-of-fit of estimating the population totals of mutual auxiliary information between clusters and units, and showed small relative bias and relative mean square root errors for estimating the population totals of survey variables that are not included in calibration adjustments.

Infrared camera calibration-based passive marker pose estimation method (적외선 카메라 칼리브레이션 기반 패시브 마커 자세 추정 방법)

  • Park, Byung-Seo;Kim, Dong-Wook;Seo, Young-Ho
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2022.06a
    • /
    • pp.203-204
    • /
    • 2022
  • 본 논문에서는 다수의 적외선 카메라의 2D 패시브마커 영상을 이용한 3차원 리지드 바디(Rigid Body) 자세추정 방법을 제안한다. 1차로 개별 카메라의 내부 변수를 구하기 위해 체스보드를 이용한 칼리브레이션 과정을 수행하고, 2차 보정 과정에서 3개의 적외선 마커가 있는 삼각형 구조물을 모든 카메라가 관찰 가능하도록 움직인 후 프레임별 누적된 데이터를 계산하여 카메라 간의 상대적인 위치정보의 보정 및 업데이트를 진행한다. 이 후 각 카메라의 좌표계를 3D월드 좌표계로 변환하는 과정을 통해 3개 마커의 3차원 좌표를 복원하여 각 마커간 거리를 계산하여 실제 거리와의 차이를 비교한 결과 1mm 내외의 오차를 측정하였다.

  • PDF

Unsupervised Monocular Depth Estimation Using Self-Attention for Autonomous Driving (자율주행을 위한 Self-Attention 기반 비지도 단안 카메라 영상 깊이 추정)

  • Seung-Jun Hwang;Sung-Jun Park;Joong-Hwan Baek
    • Journal of Advanced Navigation Technology
    • /
    • v.27 no.2
    • /
    • pp.182-189
    • /
    • 2023
  • Depth estimation is a key technology in 3D map generation for autonomous driving of vehicles, robots, and drones. The existing sensor-based method has high accuracy but is expensive and has low resolution, while the camera-based method is more affordable with higher resolution. In this study, we propose self-attention-based unsupervised monocular depth estimation for UAV camera system. Self-Attention operation is applied to the network to improve the global feature extraction performance. In addition, we reduce the weight size of the self-attention operation for a low computational amount. The estimated depth and camera pose are transformed into point cloud. The point cloud is mapped into 3D map using the occupancy grid of Octree structure. The proposed network is evaluated using synthesized images and depth sequences from the Mid-Air dataset. Our network demonstrates a 7.69% reduction in error compared to prior studies.