• Title/Summary/Keyword: 칼데라내부 관입체

Search Result 3, Processing Time 0.018 seconds

Magmatic evolution of igneous rocks related with the Samrangjin caldera, southeastern Korea (삼랑진 칼데라에 관련된 화성암류의 마그마 진화)

  • 황상구;정창식
    • The Journal of the Petrological Society of Korea
    • /
    • v.7 no.3
    • /
    • pp.161-176
    • /
    • 1998
  • There are exposed Samrangjin Tuff and intracaldera intrusions, of which rhyolitic rocks emplaced as postcollapsed central and ring intrusions within the Samrangjin caldera, and fine-grained granodiorite and biotite granite as regional tectonic intrusions nearby. The Samrangjin Tuff and the rhyolitic rocks are of a single Samrangjin magmatic system. Flow-banded rhyolite among rhyolitic rocks was emplaced in the outer part of the ring intrusions, rhyodacite in the inner part of the eastern ring, and porphyritic dacite and dacite porphyry in the inner part of the northwestern ring. Totally the Samrangjin Tuff and the rhyolitic rocks range from rhyolite to dacite in chemical composition. The Rb-Sr isotopic data of the Samrangjin Tuff and the rhyolitic rocks yield an age of $80.8{\pm}1.5(2{\sigma})$ Ma with the initial $^{87}Sr/^{86}Sr$ ratio of $0.70521{\pm}0.00010(2{\sigma})$. The continuous compositional zonations generally define a large stratified magma system in the postcollapse magma chamber. The Sr isotopic data suggest that the compositional zonations might have resulted from the fractional crystallization of a parental dacitic magma.

  • PDF

Eruptive Phases and Volcanic Processes of the Guamsan Caldera, Southeastern Cheongsong, Korea (구암산 칼데라의 분출상과 화산과정)

  • ;;;A.J. Reedman
    • The Journal of the Petrological Society of Korea
    • /
    • v.11 no.2
    • /
    • pp.74-89
    • /
    • 2002
  • Rock units, relating with the Guamsan caldera, are composed of Guamsan Tuff and rhyolitic intrusions. The Guamsan Tuff consists almost entirely of ash-flow tuffs with some volcanic breccias and fallout tuffs. The volcanic breccia comprises block and ash-flow breccias of near-vent facies and caldera-collapse breccia near the ring fracture. The lower ash-flow tuffs are of an expanded pyroclastic flow phase from the pyroclastic flow-forming eruption with an ash-cloud fall phase of the fallout tuffs on the flow units, but the upper ones are of a non-expanded ash-flow phase from the boiling-over eruption. The rhyolitic intrusions are divided into intracaldera intrusions and ring dikes that are subdivided into inner, intermediate and outer dikes. We compile the volcanic processes along a single cycle of cadela development from the eruptive phases in the Guamsan area. The explosive eruptions began with block and ash-flow phases from collapse of glowing lava dome caused by Pelean eruption, progressed through expanded pyroclastic flow phases and ash-cloud fallout phases during high column collapse of pyroclastic flow-forming eruption from a single central vent. This was followed by non-expanded ash-flow phases due to boiling-over eruption from multiple ring fissure vents. The caldera collapse induced the translation into ring-fissure vents from a single central vent in the earlier eruption. After the boiling-over eruption, there followed an effusive phase in which rhyolitic magma was injected and erupted to be progressively emplaced as small plugs/dikes and ring dikes with many lava domes on the surface. Finally rhyodacitic magma was on emplaced as a series of dikes along the junction of both outer and intermediate dikes on the southwestern side of the caldela.

Volcanisms and igneous processes of the Samrangjin caldera, Korea (삼랑진 칼데라의 화산작용과 화성과정)

  • 황상구;김상욱;이윤종
    • The Journal of the Petrological Society of Korea
    • /
    • v.7 no.3
    • /
    • pp.147-160
    • /
    • 1998
  • The Samrangjin Caldera, a trapdoor-type, formed by the voluminous eruption of the silicic ash-flows of the Samrangjin Tuff which is above 630m thick at the northern inside of the caldera and thinnerly 80m at the southern inside. The caldera volcanism eviscerated the magma chamber by a series of explosive eruptions during which silicic magma was ejected to form the Samrangjin Tuff. The explosive eruptions began with phreatoplinian eruption, progressed through small plinian eruption and transmitted with ash-flow eruption. During the ash-flow eruption, contemporaneous collapse of the roof of the chamber resulted in the formation of the Samrangjin caldera, a subcircular depression subsiding above 550m deep. During postcaldera volcanism after the collapse, flow-banded rhyolite was emplaced as cental plug along the central vent and ring dikes along the caldera margins. Subsequently rhyodacite porphyry and dacite porphyry were emplaced along the inner side of the ring dike. After their emplacement, residual magma was emplaced as a hornblende biotite granite stock into the southwestern caldera margin. In the northeastern part, the eastern dikes were cut final intrusions of granodioritic to granitic composition along the fault zone of $^{\circ}$W trend.

  • PDF