Annual Conference on Human and Language Technology
/
2008.10a
/
pp.58-62
/
2008
인터넷 상에서 상품을 구입할 때 고려하는 부분 중의 하나가 상품평이다. 하지만 이러한 상품평들을 개인이 일일이 확인 하는데에는 상당한 시간이 소요된다. 이러한 문제점을 줄이기 위해서 본 논문에서는 인터넷 상의 상품평에 대한 의견을 긍정, 부정, 일반으로 나누는 시스템을 제안한다. 제안 시스템은 CRFs 기계학습모델을 기반으로 하며, 연결어미, 형태소 유니그램, 슬라이딩 윈도우 기법의 형태소 바이그램을 자질로 사용한다. 실험을 위해서 가격비교 사이트의 모니터 카테고리에서 561개의 상품평을 수집하였다. 이 중 465개의 상품평을 학습 문서로 사용하였고 96개의 상품평을 실험 문서로 사용하였다. 제안 시스템은 실험결과 79% 정도의 정확도를 보였다. 추가 실험으로 제안 시스템이 사람들과 얼마나 비슷한 성능을 보이는지 알아보기 위해서 카파 테스트를 실시하였다. 카파 테스트를 실시한 결과, 사람간의 카파 계수는 0.6415였으며, 제안 시스템과 사람 간의 카파 계수는 평균 0.5976이였다. 결론적으로 제안 시스템이 사람보다는 떨어지지만 유사한 정도의 성능을 보임을 알 수 있었다.
KIPS Transactions on Software and Data Engineering
/
v.5
no.9
/
pp.419-424
/
2016
Named entity recognition is required to improve the retrieval accuracy of patent documents or similar patents in the claims and patent descriptions. In this paper, we proposed an automatic named entity recognition for patents by using a conditional random field that is one of the best methods in machine learning research. Named entity recognition system has been constructed from the training set of tagged corpus with 660,000 words and 70,000 words are used as a test set for evaluation. The experiment shows that the accuracy is 93.6% and the Kappa coefficient is 0.67 between manual tagging and automatic tagging system. This figure is better than the Kappa coefficient 0.6 for manually tagged results and it shows that automatic named entity tagging system can be used as a practical tagging for patent documents in replacement of a manual tagging.
Journal of the Korean Data and Information Science Society
/
v.23
no.1
/
pp.25-37
/
2012
Many statistics, such as Cohen's (1960) ${\kappa}$, Scott's (1955) ${\pi}$, and Park and Park's (2007) H have been proposed as measures of agreement to represent inter-rater reliability. This study compared bias, SE, MSE, and CV of the measures of agreement with nominal and ordinal categories in the balanced marginal distributions, and those with nominal categories in the two paradoxical situations. As a result, in all cases, AC1and Hhad smaller SE and CV.
2000년 4월, 강원도 삼척일대에 크게 발생한 산불지역에 대해서 Landsat TM 인공위성 영상자료를 이용하여 산불의 피해지역을 조사분석하였다. 산불발생 전과 후의 2시기 위성영상을 이용하여 변화탐지 기법의 하나인 화상간차이법을 적용하였다. 분석결과 산불 발생지역의 탐지에는 NDVI를 유도하고 그 차이를 이용하는 것이 가장 탁월한 것으로 나타났다. 산불 피해지역을 구분하는 임계값을 표준편차$\times$0.9로 하였을 때, 현지조사 결과에 대한 전체정확도는 93.8%, 카파계수는 0.82로 매우 높았다.
Objectives: Carotid intima-media thickness (CIMT) and the presence of carotid artery plaque are widely used as preclinical markers of atherosclerosis. Due to operator dependency in measuring CIMT, it is important to evaluate the reliability of measuring CIMT and plaque between centers in a multicenter study. The purpose of this study is to evaluate the inter-rater reliability of CIMT and plaque presence among three clinical centers of the Cardiovascular and Metabolic Disease Etiology Research Center (CMERC). Methods: Twenty people without known cardiovascular disease (age 37-64) were enrolled during 2014-2015, and their left and right carotid arteries were examined repeatedly with ultrasonography for CIMT measurements at three clinical centers according to a predetermined protocol. Maximum and mean values of CIMT at distal common carotid artery were recorded. Plaque presence at a carotid artery was checked by an operator. The reliability of CIMT and carotid plaque presence was assessed using an intraclass correlation coefficient (ICC) and kappa statistics, respectively. Results: Calculated ICC was 0.647 (95% CI: 0.487-0.779) for maximum CIMT, and 0.758 (95% CI: 0.632- 0.854) for mean CIMT. In Bland Altman plot, most observed values were distributed within mean difference ${\pm}1.96$ SD ranges. Kappa statistics of plaque presence between two centers were 0.304 (center 1 and 2), 0.507 (center 1 and 3), and 0.606 (center 2 and 3), respectively, while Fleiss kappa for overall agreement was 0.445. Conclusions: The inter-rater reliability of CIMT measurements among three clinical centers turned out to be high, and the agreement of measuring carotid plaque presence was fair.
Rice production with adequate level of area is important for decision making of rice supply and demand policy. It is essential to grasp rice cultivation areas in advance for estimating rice production of the year. This study was carried out to classify paddy rice cultivation in Gimje-si using sentinel-1 SAR (synthetic aperture radar) and UAV imagery in early July. Time-series Sentinel-1A and 1B images acquired from early May to early July were processed to convert into sigma naught (dB) images using SNAP (SeNtinel application platform, Version 8.0) toolbox provided by European Space Agency. Farm map and parcel map, which are spatial data of vector polygon, were used to stratify paddy field population for classifying rice paddy cultivation. To distinguish paddy rice from other crops grown in the paddy fields, we used the decision tree method using threshold levels and random forest model. Random forest model, trained by mainly rice cultivation area and rice and soybean cultivation area in UAV image area, showed the best performance as overall accuracy 89.9%, Kappa coefficient 0.774. Through this, we were able to confirm the possibility of early estimation of rice cultivation area in Gimje-si using UAV image.
This study aimed to use three-dimensional point cloud data (PCD) obtained from Terrestrial Laser Scanning (TLS) and Mobile Laser Scanning (MLS) to evaluate a deep learning-based species classification model for two tree species: Pinus koraiensis and Larix kaempferi. Sixteen models were constructed based on the three conditions: LiDAR platform (TLS and MLS), down-sampling intensity (1024, 2048, 4096, 8192), and deep learning model (PointNet, PointNet++). According to the classification accuracy evaluation, the highest kappa coefficients were 93.7% for TLS and 96.9% for MLS when applied to PCD data from the PointNet++ model, with down-sampling intensities of 8192 and 2048, respectively. Furthermore, PointNet++ was consistently more accurate than PointNet in all scenarios sharing the same platform and down-sampling intensity. Misclassification occurred among individuals of different species with structurally similar characteristics, among individual trees that exhibited eccentric growth due to their location on slopes or around trails, and among some individual trees in which the crown was vertically divided during tree segmentation.
Journal of The Korean Association For Science Education
/
v.43
no.3
/
pp.237-251
/
2023
This study explores the possibility of automated scoring for scientific graph answers by designing an automated scoring model using convolutional neural networks and applying it to students' kinematics graph answers. The researchers prepared 2,200 answers, which were divided into 2,000 training data and 200 validation data. Additionally, 202 student answers were divided into 100 training data and 102 test data. First, in the process of designing an automated scoring model and validating its performance, the automated scoring model was optimized for graph image classification using the answer dataset prepared by the researchers. Next, the automated scoring model was trained using various types of training datasets, and it was used to score the student test dataset. The performance of the automated scoring model has been improved as the amount of training data increased in amount and diversity. Finally, compared to human scoring, the accuracy was 97.06%, the kappa coefficient was 0.957, and the weighted kappa coefficient was 0.968. On the other hand, in the case of answer types that were not included in the training data, the s coring was almos t identical among human s corers however, the automated scoring model performed inaccurately.
A new digital change detection algorithm, Euclidean Distance Analysis, was developed in an attempt to utilize the multi-band information in a selected band-comination, as an alternative to the conventional single-band analysis methods. To evaluate the relative performance of this new method, image differencing was applied. The better performance in change detection between the two algorithms investigated was provided by the Euclidean distance analysis. The new technique of Euclidean distance analysis holds promise for change detection, since it summarizes the multiple-band information on the cover-type changes and reduces the data dimensionality. It is suggested to further evaluate this new method, quantitatively, in the different environments. The use of different accuracy indices was also examined in the determining the optimal threshold level for each change image. As the standard measure for classification accuracy, the Kappa coefficient of agreement was used for evaluation.
Park, Il-Nam;Noh, Eun-Hee;Sim, Jae-Ho;Kim, Myung-Hwa;Kang, Seung-Shik
Annual Conference on Human and Language Technology
/
2012.10a
/
pp.69-72
/
2012
본 논문은 한국어 서답형(단어, 구 수준) 문항 유형을 분석하고 실제 채점자가 채점 기준표를 보고 채점하는 방법을 컴퓨터가 인식할 수 있도록 정답 템플릿을 설계 및 개념 정의를 하여 한국어 서답형에 특화된 자동채점 시스템 방법을 제시한다. 본 시스템을 사용하여 1000개의 학생 답안지에 대한 유형 가지수 500개 이하의 2011년도 학업성취도 평가 과학 6개 문항에 대하여 채점 기준표 내용을 정답 템플릿으로 작성한 뒤 250개 학생 답안을 학습데이터로, 정답 템플릿을 업데이트로 사용, 750개 학생 답안에 대하여 자동채점한 결과, 평균 카파계수 0.84라는 수치로서 실제 사람 채점 결과와 거의 완벽히 일치라는 결과를 얻었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.