• 제목/요약/키워드: 카테고리 기반

Search Result 351, Processing Time 0.026 seconds

A Software Birthmark of Windows PE File Based on Import Table (Windows PE 파일의 임포트 테이블에 기반한 소프트웨어 버스마킹(Birthmarking) 기법)

  • Park, Hee-Wan;Lim, Hyun-Il;Choi, Seok-Woo;Han, Tai-Sook
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2007.10c
    • /
    • pp.546-551
    • /
    • 2007
  • 소프트웨어 버스마크는 프로그램을 식별하는데 사용될 수 있는 프로그램의 고유한 특징을 말한다. 본 논문에서는 windows PE(Portable Executable) 파일의 API에 대한 정보를 가지는 임포트 테이블에 기반한 프로그램 버스마킹 기법을 제안한다. 버스마크의 신뢰도를 높이기 위한 방법으로 대부분의 Windows 프로그램에서 사용되는 범용의 API는 버스마크에서 제외시키고 프로그램 개개의 특성을 나타낼 수 있는 특화된 API에 초점을 맞추어서 비교하는 방법을 사용한다. 본 논문에서 제안한 버스마킹 기법을 평가하기 위해서 다양한 카테고리의 Windows 프로그램에 대해서 실험을 하였다. 신뢰도를 측정하기 위해서 같은 프로그램에 대해서 버전별로 비교를 하였고, 프로그램의 분류에 따라서 유사한 카테고리와 다른 카테고리에 대해서 비교를 하였다. 프로그램의 변환이나 난독화에도 견딜 수 있는 강인도(Resilience)를 평가하기 위해서 서로 다른 컴파일러를 사용하여 생성된 프로그램에 대해서 비교를 하였다. 실험 결과에서 본 논문에서 제안하는 버스마크가 프로그램의 특징을 충분히 표현하고 있음을 보여준다.

  • PDF

Biomarker Detection of Specific Disease using Word Embedding (단어 표현에 기반한 연관 바이오마커 발굴)

  • Youn, Young-Shin;Kim, Yu-Seop
    • Annual Conference on Human and Language Technology
    • /
    • 2016.10a
    • /
    • pp.317-320
    • /
    • 2016
  • 기계학습 기반의 자연어처리 모듈에서 중요한 단계 중 하나는 모듈의 입력으로 단어를 표현하는 것이다. 벡터의 사이즈가 크고, 단어 간의 유사성의 개념이 존재하지 않는 One-hot 형태와 대조적으로 유사성을 표현하기 위해서 단어를 벡터로 표현하는 단어 표현 (word representation/embedding) 생성 작업은 자연어 처리 작업의 기계학습 모델의 성능을 개선하고, 몇몇 자연어 처리 분야의 모델에서 성능 향상을 보여 주어 많은 관심을 받고 있다. 본 논문에서는 Word2Vec, CCA, 그리고 GloVe를 사용하여 106,552개의 PubMed의 바이오메디컬 논문의 요약으로 구축된 말뭉치 카테고리의 각 단어 표현 모델의 카테고리 분류 능력을 확인한다. 세부적으로 나눈 카테고리에는 질병의 이름, 질병 증상, 그리고 난소암 마커가 있다. 분류 능력을 확인하기 위해 t-SNE를 이용하여 2차원으로 단어 표현 결과를 맵핑하여 가시화 한다. 2차원으로 맵핑된 결과 값을 코사인 유사도를 사용하여 질병과 바이오 마커간의 유사도를 구한다. 이 유사도 결과 값 상위 20쌍의 결과를 가지고 실제 연구가 되고 있는지 구글 스콜라를 통해 관련 논문을 검색하여 확인하고, 검색 결과를 점수화 한다. 실험 결과 상위 20쌍 중에서 85%의 쌍이 실제적으로 질병과 바이오 마커 간의 관계를 파악하는 방향으로 진행 되고 있으나, 나머지 15%의 쌍에 대해서는 실질적인 연구가 잘 되고 있지 않은 것으로 파악되었다.

  • PDF

Hybrid Product Recommender System far Internet Shopping Mall (인터넷 쇼핑몰을 위한 하이브리드 상품 추천 시스템)

  • 천인국
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2001.06a
    • /
    • pp.321-324
    • /
    • 2001
  • 본 논문은 인터넷 쇼핑몰에서의 효율적인 상품 추천 시스템의 구조를 제안한다. 본 상품 추천 시스템은 상품 추천의 2 가지 방법인 지식기반 상품 추천 방법과 collaborative filtering을 혼합하였으며 먼저 고객에게 질문을 던져서 고객의 요구 조건을 수집한 다음, 요구 조건과 상품 데이터베이스에 저장된 상품정보와 일치도를 계산하여 추천 후보 상품 리스트를 생성한다. 이 추천 상품 리스트에 속하는 상품에 대해서는 다시 collaborative filtering 방법이 적용된다. 즉, 비슷한 취향을 가지는 고객들이 높이 평가하는 제품들을 최종적으로 고객들에게 추천하게 된다. 이 방법은 기존의 방법들이 모두 특정한 상품 카테고리에 대해서만 효과적인데 데하여 제안된 방법은 모든 상품 카테고리에 적용할 수 있으며 collaborative filtering 방법을 후보 추천 상품에 대해서만 적용시킴으로써 이 방법의 단점인 많은 계산량을 줄일 수 있다. 제안된 시스템은 EJB(Enterprise Java Beans)를 사용하여 컴포넌트로 구현되었으며 이동통신기기 카테고리에 대하여 시험 구현되었다.

  • PDF

Word Representation Analysis of Bio-marker and Disease Word (바이오 마커와 질병 용어의 단어 표현 분석)

  • Youn, Young-Shin;Nam, Kyung-Min;Kim, Yu-Seop
    • Annual Conference on Human and Language Technology
    • /
    • 2015.10a
    • /
    • pp.165-168
    • /
    • 2015
  • 기계학습 기반의 자연어처리 모듈에서 중요한 단계 중 하나는 모듈의 입력으로 단어를 표현하는 것이다. 벡터의 사이즈가 크고, 단어 간의 유사성의 개념이 존재하지 않는 One-hot 형태와 대조적으로 유사성을 표현하기 위해서 단어를 벡터로 표현하는 단어 표현 (word representation/embedding) 생성 작업은 자연어 처리 작업의 기계학습 모델의 성능을 개선하고, 몇몇 자연어 처리 분야의 모델에서 성능 향상을 보여 주어 많은 관심을 받고 있다. 본 논문에서는 Word2Vec, CCA, 그리고 GloVe를 사용하여 106,552개의 PubMed의 바이오메디컬 논문의 요약으로 구축된 말뭉치 카테고리의 각 단어 표현 모델의 카테고리 분류 능력을 확인한다. 세부적으로 나눈 카테고리에는 질병의 이름, 질병 증상, 그리고 난소암 마커가 있다. 분류 능력을 확인하기 위해 t-SNE를 이용하여 2차원으로 단어 표현 결과를 맵핑하여 가시화 한다.

  • PDF

Investigating the End-User Tagging Behavior and its Implications in Flickr (플리커 이미지 자료에 대한 이용자 태깅 행태 분석과 활용 방안)

  • Kim, Hyun-Hee;Kim, Min-Kyung
    • Journal of Information Management
    • /
    • v.40 no.2
    • /
    • pp.71-94
    • /
    • 2009
  • Indexing images using traditional indexing methods like taxonomy is not always efficient because of its visual content. This study examined how to apply folksonomies to image retrieval. To do this, first, we developed a category model for image tags found in Flickr. The model includes five categories and seventeen subcategories. Second, in order to evaluate the usefulness of the model to represent the various image tags as well as to investigate the end-user tagging behavior, three researchers classified the sampled image tags(141 most popular tags, 105 tags on three individual tag clouds and 3,848 image tags assigned on 156 images) according to the model. Finally, based on the research results, we proposed three methods for efficient image retrieval: extending folksonomies by combining them with ontologies; improving image retrieval efficiency using visual content and folksonomies; and updating taxonomy using folksonomies.

Semantic Query Expansion based on Concept Coverage of a Deep Question Category in QA systems (질의 응답 시스템에서 심층적 질의 카테고리의 개념 커버리지에 기반한 의미적 질의 확장)

  • Kim Hae-Jung;Kang Bo-Yeong;Lee Sang-Jo
    • Journal of KIISE:Databases
    • /
    • v.32 no.3
    • /
    • pp.297-303
    • /
    • 2005
  • When confronted with a query, question answering systems endeavor to extract the most exact answers possible by determining the answer type that fits with the key terms used in the query. However, the efficacy of such systems is limited by the fact that the terms used in a query may be in a syntactic form different to that of the same words in a document. In this paper, we present an efficient semantic query expansion methodology based on a question category concept list comprised of terms that are semantically close to terms used in a query. The semantically close terms of a term in a query may be hypernyms, synonyms, or terms in a different syntactic category. The proposed system constructs a concept list for each question type and then builds the concept list for each question category using a learning algorithm. In the question answering experiments on 42,654 Wall Street Journal documents of the TREC collection, the traditional system showed in 0.223 in MRR and the proposed system showed 0.50 superior to the traditional question answering system. The results of the present experiments suggest the promise of the proposed method.

A Scheme for Content-based Music Element Retrieval Using Probabilistic Latent Component Analysis and Acoustic Descriptor (확률적 은닉 성분 분석 및 음향 기술자를 사용한 내용 기반 음악 요소 검색 방법)

  • Han, Byeong-Jun;Lee, Kyo-Gu;Rho, Seung-Min;Hwang, Een-Jun
    • Annual Conference of KIPS
    • /
    • 2011.04a
    • /
    • pp.475-478
    • /
    • 2011
  • 지금까지 음악 정보 검색을 위한 다양한 내용 기반 음악 검색 및 비교 방법이 제안되었다. 그런데, 기존 연구들은 질의 방식 및 검색 카테고리가 변화함에 따라 상이한 방법을 제시하고 있어 음악 검색 방법을 통합하는 데에 한계가 있다. 이러한 문제를 해결하기 위해, 본고에서는 내용 기반 음악 검색의 일반화를 위한 내용 기반 음악 요소 검색(CBMER) 방법을 제안하였다. 제안 방법에서는 확률적 은닉 성분 분석(PLCA)을 사용하여 음원을 분해하고, 각 분해 요소로부터 오디오 특성을 추출하였다. 제안 방법을 사용하여 다양한 질의 방식 및 검색 카테고리로 내용 기반 음악 요소 검색이 가능함을 보이기 위해, 남성/여성의 목소리로부터 질의를 생성하여 목소리 성별에 따른 음악을 검색하는 실험을 수행하고 그 결과를 분석하였다.

Pointer-Generator Networks for Community Question Answering Summarization (Pointer-Generator Networks를 이용한 cQA 시스템 질문 요약)

  • kim, Won-Woo;Kim, Seon-Hoon;Jang, Heon-Seok;Kang, In-Ho;Park, Kwang-Hyun
    • Annual Conference on Human and Language Technology
    • /
    • 2018.10a
    • /
    • pp.126-131
    • /
    • 2018
  • cQA(Community-based Question Answering) 시스템은 사용자들이 질문을 남기고 답변을 작성하는 시스템이다. cQA는 사용자의 편의를 위해 기존의 축적된 질문을 검색하거나 카테고리로 분류하는 기능을 제공한다. 질문의 길이가 길 경우 검색이나 카테고리 분류의 정확도가 떨어지는 한계가 있는데, 이를 극복하기 위해 cQA 질문을 요약하는 모델을 구축할 필요가 있다. 하지만 이러한 모델을 구축하려면 대량의 요약 데이터를 확보해야 하는 어려움이 존재한다. 본 논문에서는 이러한 어려움을 극복하기 위해 cQA의 질문 제목, 본문으로 데이터를 확보하고 필터링을 통해 요약 데이터 셋을 만들었다. 또한 본문의 대표 단어를 이용하여 추상 요약을 하기 위해 딥러닝 기반의 Pointer-generator model을 사용하였다. 실험 결과, 기존의 추출 요약 방식보다 딥러닝 기반의 추상 요약 방식의 성능이 더 좋았으며 Pointer-generator model이 보다 좋은 성능을 보였다.

  • PDF

Development of a Notice Classification and Recommendation Application Using Machine Learning Techniques (머신러닝 기반 공지문 분류 및 추천 애플리케이션 개발)

  • Kim, Hyemin;Oh, Jiun;Chung, Hyerin;Lee, Ki Yong
    • Annual Conference of KIPS
    • /
    • 2018.05a
    • /
    • pp.420-423
    • /
    • 2018
  • 본 논문에서는 웹 및 문자 공지문을 자동으로 분류하고 추천함으로써 사용자가 원하는 공지문만을 볼 수 있도록 하는 애플리케이션을 개발한다. 본 애플리케이션은 공지문을 여러 카테고리로 자동 분류하여 사용자가 원하는 카테고리에 속한 공지문만을 볼 수 있도록 하며, 사용자가 선호할 만한 공지문을 추천하는 기능을 제공한다. 공지문 분류를 위해 다층 신경망 모델과 Naive Bayes 분류기를 사용하였으며, 공지문 추천을 위해 키워드 기반 자체 알고리즘을 사용하였다. 그 밖에 Word2Vec 을 활용한 검색어 추천 등 부가 기능을 제공하여 사용자가 쉽게 공지문을 찾을 수 있도록 하였다. 본 애플리케이션을 통해 사용자는 수많은 공지문 중 관심 있는 공지문만을 효율적으로 확인할 수 있다.

A Search Category Recommendation System Using Client-based Deep Learning (클라이언트 기반 딥러닝을 이용한 검색 카테고리 추천 시스템)

  • Ahn, Cheol-Yong;Park, JiSu;Shon, Jin Gon
    • Annual Conference of KIPS
    • /
    • 2019.10a
    • /
    • pp.687-690
    • /
    • 2019
  • 웹 사이트 사용자들은 자신의 취향에 맞춘 웹 사이트 개인화 서비스를 원한다. 이에 따라 관련 기업들은 웹 사이트의 회원가입을 통해 사용자들의 개인 정보를 관리하여 개인화 서비스를 지원하고 있다. 하지만 기업들의 개인 정보 유출 사고와 잘못된 기업 간 공유로 개인 정보보호 관리에 어려움이 있다는 문제점이 있다. 본 논문에서는 클라이언트 기반 딥러닝(Client-based Deep Learning)과 웹 브라우저 표준 데이터베이스 IndexedDB를 사용하여 검색 카테고리 추천 시스템을 구현한다.