• Title/Summary/Keyword: 카테고리 기반

Search Result 351, Processing Time 0.024 seconds

Automatic Image Categorization using Combination of Multiple Features (다중 특징값의 조합을 이용한 자동적 이미지 카테고리화 방법)

  • Yang, Seung-Ji;Yoon, Jeong-Hyun;Ro, Yong-Man
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2002.11a
    • /
    • pp.39-42
    • /
    • 2002
  • 본 논문에서는 내용 기반 이미지 검색 및 필터링 시스템을 위한 카테고리 식별 방법을 제안한다. 제안된 방법에서는 식별 가능한 카테고리를 사전에 정의하고, 정의된 카테고리를 대표할 수 있는 이미지들을 수집한다. 다음으로, 이들로부터 다중의 내용 기반 특징값을 추출하고, 추출된 특징값들로 카테고리 데이터베이스를 구성한다. 카테고리를 식별할 질의 이미지가 입력으로 들어오면, 질의 이미지로부터 추출된 다중 특징값들을 각 카테고리의 단일 특징값과 각각 비교함으로써, 카테고리를 대표하는 다중의 유사도 거리값을 측정한다. 각 카테고리를 대표하는 다중의 유사도 거리값들은 두 가지 연산 방법에 의해 조합되는데, 조합 방법은 각각의 단일 특징값이 각 카테고리 식별에 미치는 영향을 고려하여 정의된다. 최종적으로, 각 카테고리의 조합된 유사도 거리값을 비교한 다음, 가장 유사도가 큰 카테고리를 해당 질의 이미지의 카테고리로 식별한다.

  • PDF

Object Categorization Using PLSA Based on Weighting Distinctions (특이점 가중치 기반 PLSA를 이용한 객체 범주화)

  • Song, Hyun-Chul;Choi, Kwang-Nam
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2007.06c
    • /
    • pp.460-465
    • /
    • 2007
  • 영상 내 사물들의 카테고리를 인식하는 연구는 시각적 영상처리와 연관된 다양한 분야에서 활발히 진행되고 있다. 객체 범주화(Object Categorization)는 가정과 같은 실내에서 책상, 의자, 컵, 주전자 등의 다양한 사물들을 구분하여 인식하는데 중요한 역할을 할 수 있다. 본 논문에서는 최근 영상 내 객체들의 카테고리 분석을 위해 연구된 PLSA를 기반으로 특이점에 가중치를 부여하여, 보다 유사한 카테고리 간에 인식 성능을 향상시키는 접근법에 대하여 연구하였다. PLSA는 문서기반의 정보검색 분야로부터 소개된 기법으로, 약한 수준의 비감독 방법임에도 불구하고 인상적인 인식성능을 보여준다. 그러나 비슷한 특징점 분포를 보이는 유사한 카테고리 간의 객체 카테고리 인식에 대해서는 비교적 낮은 성능을 보인다. 본 연구에서는 카테고리간의 비교실험을 통해 각 특징점에 대하여 가중치를 부여한 PLSA를 적용하여 유사한 객체 간의 카테고리 인식 가능성을 살펴보았다. 실험에서는 기존의 PLSA 기법과 제안한 가중치를 부여 PLSA 기법을 각각 적용하여 그 성능을 비교하였다. 본 연구에서는 기존 PLSA 기법에서는 비교적 낮은 인식률을 보인 유사한 카테고리 인식에 대하여 실험 결과를 통해 가중치를 부여한 PLSA 기법이 보다 향상된 성능을 보임을 확인하였다.

  • PDF

Semantic Query Expansion based on a Question Category Concept List in QA system (질의 응답 시스템에서 질의 카테고리별 개념리스트 구축에 기반한 의미적 질의 확장)

  • 김혜정;강보영;박성배;이상조
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2004.10a
    • /
    • pp.178-180
    • /
    • 2004
  • 질의 응답(Question Answering) 시스템은 질의에서 요구하는 정답 유형(Answer tyype) 및 질의에 사용된 용어를 적용하여 보다 정확한 답을 추출하고자 한다. 그러나 질의에 사용된 용어들이 문서의 정답문장에 그대로 사용되지 않고 같은 의미의 다른 어휘로 출현하기도 하며, 혹은 다른 문법적 정보를 가진 카테고리로 등장하여 정답 추출에 어려움이 따른다. 따라서, 본 논문은 질의별 카테고리 개념 리스트를 구축하여 효과적인 의미적 질의 확장 방법론을 제안한다. 제안된 방법은 먼저 질문 문장의 패턴 린 질의 정보 유형을 파악하여 질의 카테고리 및 카테고리별 개념 리스트를 구축한다. 그런 후 구축된 질의 개념 카테고리 및 리스트를 활용하여 질의 유형을 학습하고, 새로운 질의가 입력되면 해당 개념 카테고리로 분류한 후, 개념 리스트를 기반으로 개념별 질의 확장을 수행한다. 제안된 시스템의 성능 명가를 위하여, TREC-9의 질의와 TREC 문서 중 1991년도 WSJ(Wall Street Journal) 42,654건을 대상으로 실험한 결과 질의 확장을 수행하지 않는 시스템의 경우 MRR(Mean reciprocal ratio) 측정에서 0.223의 결과를 보인 반면 제안된 시스템의 경우 0.50의 향상된 결과를 보였다.

  • PDF

Object Categorization Using PLSA Based on Weighting (특이점 가중치 기반 PLSA를 이용한 객체 범주화)

  • Song, Hyun-Chul;Whoang, In-Teck;Choi, Kwang-Nam
    • Journal of Internet Computing and Services
    • /
    • v.10 no.4
    • /
    • pp.45-54
    • /
    • 2009
  • In this paper we propose a new approach that recognizes the similar categories by weighting distinctive features. The approach is based on the PLSA that is one of the effective methods for the object categorization. PLSA is introduced from the information retrieval of text domain. PLSA, unsupervised method, shows impressive performance of category recognition. However, it shows relatively low performance for the similar categories which have the analog distribution of the features. In this paper, we consider the effective object categorization for the similar categories by weighting the mainly distinctive features. We present that the proposed algorithm, weighted PLSA, recognizes similar categories. Our method shows better results than the standard PLSA.

  • PDF

Analysis of Categorized Cultural Asset and Application for Cultural Asset App Store Based on IoT Environment (IoT 환경기반 문화재 앱스토어 구축을 위한 카테고리별 문화재 및 애플리케이션 분석)

  • Lim, Won-Jun;Lee, Kang-Hee
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2015.01a
    • /
    • pp.105-106
    • /
    • 2015
  • 본 논문에서는 IoT 환경 기반의 문화재 앱스토어 구축을 위한 카테고리별 문화재 및 애플리케이션을 분석한다. 문화재 종류는 문화재진흥청에서 정의한 종류로 분류되어 있으며 종류에 따라 문화재 개수도 다양하다. 이러한 다양한 종류의 문화재 및 애플리케이션 카테고리 분석을 통해 문화재 앱스토어 구축에 있어 카테고리 분류 작업시 중요한 기반 자료가 된다. 이는 앱스토어 소비자에게 정확한 서비스를 제공하는 시스템을 구축하는데 도움이 될 것이다.

  • PDF

Mobile app authoring tool with category builder and hybrid app generator (카테고리 빌더와 하이브리드앱 생성기를 통한 모바일앱 저작도구)

  • Hyun, Cheol;Kim, Sang-Heon
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2012.05a
    • /
    • pp.69-70
    • /
    • 2012
  • 본 연구는 콘텐츠 배포를 위한 앱 제작에 있어 모바일앱 개발의 어려움을 극복하기 위한 저작도구에 관한 것이다. 카테고리 빌더란 콘텐츠의 특성과 수요자의 특성을 분석한 카테고리를 기반으로 모바일웹을 생성할 수 있는 도구이며, 하이브리드앱 생성기는 모바일웹 코드를 기반으로 네이티브 코드와 통합된 하이브리드 모바일앱을 생성하는 도구이다. 모바일앱 저작도구는 모바일앱의 분류에 맞게 사전에 카테고리를 빌드 후 제공된 카테고리를 기반으로 콘텐츠의 세부 내용을 수정하여 저장하고, 저장된 내용은 HTML5 표준에 맞는 모바일웹페이지로 생성된 후 하이브리드앱으로 변환한다. 제안된 모바일앱 저작도구는 모바일앱 개발의 생산성을 높여줄 수 있으며 다양한 사용자 요구에 효율적으로 대응할 수 있다.

  • PDF

Feasibility Study on Cross-Product Category User Profiling in Collaborative Filtering Based Personalization (협업 필터링 기반 개인화에서의 상품군 중립적 사용자 프로파일링 타당성 검토)

  • Kim, Jong-Woo;Park, Soo-Hwan;Lee, Hong-Ju
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2005.10a
    • /
    • pp.257-263
    • /
    • 2005
  • 초기에 하나의 상품 카테고리만을 다루던 전자상거래 사이트들이 브랜드 확립 후에 다른 상품 카테고리까지 확대해 나가는 모습을 많이 보아왔다. 고객이 아직 방문하지 않은 신규 상품 카테고리의 상품에 대하여 기존 상품 카테고리에서 만들어진 사용자 프로파일을 활용하여 개인화된 추천을 할 수 있다면, 고객이 다양한 상품 카테고리를 방문하도록 유도할 수 있을 것이다. 하지만 일반적으로 전자상거래 사이트에서는 상품 카테고리별로 사용자의 선호도를 파악하여 개인화된 추천을 수행하기 때문에, 해당 카테고리 내 상품의 구매나 방문 기록이 없다면 개인화된 추천을 수행하기가 어렵다 . 본 논문에서는 협업 필터링을 통해 신규 상품카테고리 내의 상품을 추천하기 어려운 고객들을 대상으로 기존의 사용자 선호도 데이터를 활용하여 신규 상품 카테고리 내의 상품을 추천하는 방안의 타당성을 살펴보도록 한다. 즉, 기존 사용자의 특정상품 카테고리 선호도 데이터를 통해 사용자간 유산도를 계산하고, 이를 추천하려는 타 상품 카테고리 내의 상품들에 대한 예측 선호도 계산에 활용 타당성을 살펴본다. 이를 실증적으로 검토하기 위해서, Yes24 사이트의 서적, 음반, DVD 3개의카테고리 내의 상품을 방문한 웹 패널 데이터를 이용하여 타당성 분석을 수행하였다. 분석 결과, 동일 상품 카테고리 내의 선호도 정보를 가지고 현업 필터링을 수행하는 것보다는 추천 성과가 낮았지만 활용할만한 추천 성과를 보였으며, 활용하는 상품 카테고리와 예측하는 상품 카테고리별로 추천성과가 상이했다.

  • PDF

Determining Multiple Word Category Membership for Modeling Unseen Context (미관측문맥 모델링을 위한 다중단어카테고리 결정)

  • Han Myungsoo;Chung Minhwa
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • spring
    • /
    • pp.23-26
    • /
    • 2000
  • 본 논문에서는 연속음성인식에 사용되는 언어모델이 학습 코퍼스에서 나타나지 않는 문맥에 대하여 신뢰할만한 확률을 생성할 수 있도록 하는 방안으로 다중 단어 카테고리 결정방법을 제안하였다. 제안된 다중 단어 카테고리 결정 방법은 기존의 카테고리 기반 언어모델에서의 미관측 문맥에 대한 모델링 능력을 유지하면서 동형이의어에 대한 확률의 과도한 일반화를 방지한다. 제안된 방법을 이용한 언어모델의 성능을 측정하기 위해 미관측 문맥이 $31\%$ 포함된 인식문장에 대한 N-Best rescoring을 수행한 결과 word accuracy는 1-Best문장에 대해서 $3.2\%$의 향상을 얻었고 기존의 카테고리기반 언어모델을 적용한 결과에 비하여 $0.8\%$의 향상을 얻을 수 있었다.

  • PDF

Selecting Initial Training Set for Active Learning by Clustering (군집화 기법을 이용한 능동적 학습의 최초학습예제 선정)

  • 강재호;류광렬
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2003.10a
    • /
    • pp.16-18
    • /
    • 2003
  • 기계학습의 분류(classification) 기술을 실제 문제에 적용하기 위해서는 카테고리(category)를 부여한 학습예제를 상당수 준비하여야 한다. 예제에 카테고리를 부여(labeling)하는 작업에는 무시할 수 없는 시간과 인력을 필요로 한다. 능동적 학습(active learning)은 동일한 수의 학습예제로 최대한의 성능을 달성하기 위하여 카테고리를 부여할 학습예제를 선별하는 전략이다. 능동적 학습은 현재까지 파악된 정보에 기반하여 분류기(classifier)를 생성하고, 생성된 분류기를 활용하여 카테고리를 부여받았을 때 가장 이득이 큰 예제들을 선정하여 사용자에게 문의하는 과정을 반복하여 수행한다. 만일 능동적 학습의 첫 학습단계에서 학습에 보다 유용한 예제들을 최초학습예제집합으로 선정한다면 같은 수의 학습예제로 더 나은 성능을 달성할 수 있을 것이다. 본 논문에서는 유사한 예제들은 동일한 카테고리에 속할 가능성이 높다는 일반적인 가정에 기반하여 예제들을 군집화(clustering)한 후, 생성된 각 군집을 대표할 수 있는 예제로 최초학습예제집합으로 구성하는 방안을 제안한다. 제안한 방안을 문서분류 문제를 대상으로 실험해 본 결과 최초학습예제들을 임의로 선정하는 방식보다 정확도가 높은 분류기를 생성할 수 있음을 확인하였다.

  • PDF

Reconstruction of Categories on the National Petition Site Using K-Means clustering and Topic Modeling (K-means 클러스터링과 토픽 모델링을 기반으로 한 국민청원 사이트의 카테고리 재구성)

  • Woo, Yun Hui;Kim, Hyon Hee
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2019.05a
    • /
    • pp.302-305
    • /
    • 2019
  • 국민 청원 사이트가 뛰어난 접근성과 신속성으로 인하여 국민들로부터 많은 관심을 받고 있다. 현재 국민청원 사이트의 카테고리 분류는 '미래', '성장동력' 등을 포함한 16개의 카테고리 및 기타로 구성되어 있으나 그 기준이 모호하여 많은 청원글들이 기타 카테고리로 분류되고 있는 상황이다. 이는 청원글의 내용을 명확히 반영하지 않고 미리 정의된 카테고리 구조를 사용하고 있는데서 기인한다고 할 수 있다. 본 논문에서는 보다 구체적으로 정의된 카테고리를 정의하고자 추천 순으로 1,500개의 청원글을 수집하였고, 수집된 청원글의 내용을 바탕으로 카테고리 구조를 추출하였다. 먼저, k-평균 알고리즘을 적용하여 청원글을 군집하여 대분류를 정의하였고, 보다 구체적인 세부 분류를 정의하기 위하여 토픽모델링을 실시하였다. 본 논문에서 제시하는 계층적 카테고리 구조는 청원글의 내용을 바탕으로 대분류와 세부분류로 구성된 것이므로 새로운 청원글을 등록하거나 분류하는 데 적절한 것으로 보인다.