• Title/Summary/Keyword: 카올린 토양

Search Result 10, Processing Time 0.025 seconds

Effects of Hydrophobic Chain Structure of Nonionic Surfactanets on Surfactant Adsorption and Diesel Removal from Kaolin Soil (비이온계 계면활성제의 소수성 구조가 카올린 토양에서 흡착 및 경유 제거에 미치는 영향)

  • 김종성;이기세
    • Journal of Korea Soil Environment Society
    • /
    • v.4 no.3
    • /
    • pp.17-24
    • /
    • 1999
  • The effects of hydrophobic chain length and its structure of nonionic surfactants on surfactant adsorption and contaminated diesel removal were studied in kaolin soil. Hydrocarbon chain length and double bond in hydrophobic tail group of nonionic surfactants affected surfactant adsorption and diesel removal efficiency from kaolin soil. The degrees of surfactant adsorption and diesel removal were closely related each other. Among nonionic surfactants we studied, surfactants with shorter hydrophobic chain length and higher HLB value showed lower degree of adsorption and higher efficiency of diesel removal. The existence of unsaturated carbons in the structure of hydrophobic chain enhanced diesel removal by reducing surfactant adsorption to kaolin soil. The best diesel removal was obtained after adsorption saturation was reached. If surfactant concentration was higher than a critical value, diesel removal was reduced probably because of precipitation. liquid crystal formation, or coacervation of surfactants at high concentration.

  • PDF

A study on electric current variation characteristics during Electrokinetic remediation of kaolinite contaminated by Pb (납으로 오염된 카올린의 Electrokinetic 정화기법 적용시 전류변화 특성에 관한 연구)

  • 김정환;한상재;김수삼
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2000.11a
    • /
    • pp.302-306
    • /
    • 2000
  • In case of applying electrokinetic remediation, magnitude of electric current is one of major factors for estimation of contaminant transport. In practice, electric current provide determination of electric conductivity based on specimen resistance. Electric current variation is produced during Electrokinetic remediation test. Electric current is decreased by expotential function according to time in condition of constant voltage. This can be interpreted as precipitation effect by OH$^{-10}$ generation in a cathode.

  • PDF

Electrokinetic Injection characteristics of Ions into Kaolinite and Sand for Bioremediation (토질에 따른 Electrokinetic 이온 주입 특성)

  • 한상재;이호창;김수삼
    • Journal of Soil and Groundwater Environment
    • /
    • v.7 no.1
    • /
    • pp.15-24
    • /
    • 2002
  • Nowdays electrokinetic technique has been applied to supply nutrients and TEAs for in-situ bioremediation. However the Injection characteristics under electrical field have not been examined in various soil types. Therefore, The characteristics of electrokinetic injection into kaolinite and sand are investigated. During the 17 d of processing, There was a gradual increase in ammonium (nutrient) concentration from the anode compartment. However the ammonium concentration at the cathode increased beyond that at the anode in sand. A relatively constant profile of sulfate (TEA) was achieved specifically, the final sulfate concentration in each specimen were different. When EK injection technique is implemented in field, the most important consideration should be an assessment of the injection characteristics with respect to the soil types.

A Comparative Study on Adsorption Behavior of Heavy Metal Elements onto Soil Minerals : Illite, Halloysite, Zeolite, and Goethite (토양광물에 대한 중-금속원소의 흡착특성 비교연구: 일라이트, 할로이사이트, 제올라이트, 및 침철석)

  • 추창오;성익환
    • Journal of Korea Soil Environment Society
    • /
    • v.4 no.1
    • /
    • pp.57-68
    • /
    • 1999
  • Adsorption behavior of metal elements onto soil minerals such as illite, halloysite. zeolite(clinoptilolite). and goethite was comparatively investigated at $25^{\circ}C$ using pollutant water collected from a gold-bearing metal mine. Speciation of solutions reacted was determined by WATEQ4F program, indicating that most of metal ions exist as free ions and that there is little difference in chemical species and their relative abundances between initial soultion and reacted solutions. The experimental data exhibit that the adsorption extent of elements varies depending on mineral types and reaction time. The adsorption process practically took place within one hour, with Fe and As significantly removed from solutions. On the whole, halloysite is regarded as the most effective adsorbent among minerals used in the experiment. Adsorption properties of alkali elements do not consistent with a manner predicted from hydrated ionic radii.

  • PDF

Settling and Consolidation Behaviour of Cohesive Soil Slurry (점토슬러리의 침강 및 압밀 거동에 관한 연구)

  • Lee, MyungHo;Kim, Dae-Ho;Kim, Soo Sam
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.3C
    • /
    • pp.143-148
    • /
    • 2008
  • This paper demonstrates settling and further consolidation behaviour of dredged clayey soils during landfilling. The effects of initial moisture content, electrolyte type and concentration on settling and consolidation behaviour were examined and evaluated by laboratory column tests. Electrokinetic tests were carried out with modified settling column to compare the soil behaviour under the gravity. From the testing results, the settling velocity increased due to the effects of cations in the electrolyte solution, and electrically induced settlements were found to be greater than those under the gravity.

Adsorptive Removal Properties of Heavy Metal Ions By Soils from the Upper Banbyun Stream (반변천 상류 주변 토양의 중금속 이온 흡착제거 특성)

  • Kim, Younjung;Hwang, Haeyeon;Kim, Yunhoi;Ryu, Sanghoon;Baek, Seungcheol;Seo, Eulwon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.8 no.2
    • /
    • pp.5-9
    • /
    • 2007
  • This study carried out to investigate the removal capacity of heavy metals such as Cu (II), Zn (II) and Cd (II) dissolved in aqueous solution in the soils collected from Hyeon-Dong (HD), San-seong (SS), Keum-chon (KC) and Keum-Hac (KH) located in the upper Banbyun stream. The pH of all the soils was weak alkali such as 8.8 9.2. According to the analysis of chemical composition of the soils, the amount of $SiO_2$, $AlO_2$ and CaO were similar in all tested soils. However, the amount of $K_2O$, $FeO_3$ and MgO were different from each soil. The XRD measurement with these soils showed that quartz and feldspar were presented in all tested soils, and the distribution of kaoline, illite, montmorillonite, vermiculite and calcite were different from each soil. The results of the removal capacity of heavy metals indicated that all the soils had more than 98% of the removal efficiency of Cu (II), Zn (II) and Cd (II), and among the heavy metals, Cu (II) was removed the most effectively. These results suggested that the soils collected from the upper Banbyun stream have the high removal capacity of heavy metals, and these soils could be used for the banking a river around the abandoned mine area, containing the higher concentrations of heavy metals than the usual stream.

  • PDF

Adsorption Characteristics of Cobalt, Strontium, and Cesium on Natural Soil and Kaolin (자연토양 및 카올린에 대한 코발트, 스트론튬, 세슘의 흡착 특성)

  • Cheon, Kyeong Ho;Choi, Jeong-Hak;Shin, Won Sik;Choi, Sang June
    • Journal of Environmental Science International
    • /
    • v.23 no.9
    • /
    • pp.1609-1618
    • /
    • 2014
  • In this study, as a fundamental study for the remediation of the radionuclides-contaminated soil, the adsorption of cobalt, strontium, and cesium on natural soil and kaolin were experimently investigated and adsorption characteristics were evaluated by using several adsorption kinetic and isotherm models. The pseudo-first-order kinetic model (PFOM), pseudo-second-order kinetic model (PSOM), one-site mass transfer model (OSMTM), and two compartment first-order kinetic model (TCFOKM) were used to evaluate the kinetic data and the pseudo-second-order kinetic model was the best with good correlation. The adsorption equilibria of cobalt, strontium, and cesium on natural soil were fitted successfully by Redlich-Peterson and Sips models. For kaolin, the adsorption equilibria of cobalt, strontium, and cesium were fitted well by Redlich-Peterson, Freundlich, and Sips models, respectively. The amount of adsorbed radionuclides on natural soil and kaolin was in the order of cesium > strontium > cobalt. It is considered that these results could be useful to predicting the adsorption behaviors of radionuclides such as cobalt, strontium, and cesium in soil environments.

Incubational Characteristics of Bacillus polymyxa 'HB26-5' Antagonistic to Ginger Rhizome Rot and Its Formulation (생강 근경썩음병 길항균 Bacillus polymyxa 'HB26-5' 균주의 배양적 특성 및 제형화)

  • 이두구;심재성;심형권;이용훈;박홍규
    • Korean Journal of Plant Resources
    • /
    • v.12 no.4
    • /
    • pp.289-296
    • /
    • 1999
  • The availability of Bacillus polimyxa 'HB 26-5' as a biological control agent was investigated. The antagonistic bacteria Bacillus polymyxa 'HB 26-5' grew well on the media at pH 7.0 and the optimum growth temperature was $25^{\circ}C$. The pH of the media changed to weak acid(pH 6.1~6.5) at the beginning of incubation, but to weak alkali(pH 7.8~8.2) at 7days after incubation. The best carrier to enhance colonization of the bacteria were the mixture of rice bran and peat, or rice bran and kaoline, in those formulation the density of the bacteria was changed slightly, though the density was beginning to decrease 3 weeks after application at field. In view of the physical characteristics of the formulation for the density maintenance during storage such as the hardness and the size, the best one was the formulation consisted of sodium alginate 2%, kaolin 15% and rice bran 3%.

  • PDF

Geological Environments and Deterioration Causes of the Sitting Buddha Carved on Rockcliff in Bukjiri, Bonghwa (봉화 북지리 마애여래좌상의 지질환경과 훼손원인)

  • Hwang, Sang-Koo;Nam, Jae-Guk
    • Economic and Environmental Geology
    • /
    • v.40 no.1 s.182
    • /
    • pp.47-66
    • /
    • 2007
  • The Sitting Buddha Carved on Rockcliff (National treasure No. 201) in Bukjiri consists of porphyritic biotite granite, which was fractured by three joint sets of NE-SW, EW and NS directions. They produced a physical weathering that broke many parts of the Buddha and background. The chemical index of alteration is 59 to 61 from the major elements in the granite that was weathered into producing kaolin minerals from alteration of feldspars and biotite. With weathering degree, major element compositions increase in $SiO_2$ and MnO, whereas decrease in $TiO_2,\;{Fe_2O_3}^t,\;MgO,\;CaO\;and\;K_2O$. Change proporations of trace elements to $Al_2O_3$ increase in all transition elements, Rb and Y, whereas decrease in Li, Sr and Ba. REE pattern increases only in HREE. Particularly, a decrease in CaO, $K_2O$, Sr and Ba results in what they are effluxed to dissolve from feldspars by groundwater. The Buddha image has been deteriorated into joints, color changes, brown rusts, granular decay, microorganic smears by the such weathering causes as deformation, moisture, temperature variation and microorganic living. The moisture, which leaks along the joints in the granite, not only dissolve to decompose minerals but also grows many microorganism and is frozen over during winter. NE-SW and NS joint sets affect to seep in water during rainy days to deteriorate the image because they extend outward.

Mineralogical Characteristics of Lime Mortars Used in Pointing of Namhansanseong Yeojang in Joseon Dynasty (남한산성 여장의 사춤으로 사용된 조선시대 석회 모르타르의 광물학적 특성 연구)

  • Kim, Eunkyung;Ahn, Sunah;Mun, Seongwoo;Kang, Soyeong
    • Journal of the Mineralogical Society of Korea
    • /
    • v.30 no.4
    • /
    • pp.179-186
    • /
    • 2017
  • This study investigated the mineralogical characteristics of lime mortars used in pointing of Namhansanseon Yeojang from Joseon dynasty. Polarization microscopy revealed quartz, feldspar, mica, pyroxene and opaque minerals in the lime mortars. XRD analysis also confirmed clay minerals chlorite and kaolin. As a result of particle size analysis of lime mortars, the particle size distribution was wide and size was not uniform. 60% of samples were corresponded to the sand area. The chemical components detected from XRF analysis, 8.71-11.18 % of Ca as the main component of lime and $SiO_2$, $Al_2O_3$, and $Fe_2O_3$ in soil minerals were main components. The lime mortars showed an endothermic peak due to decarbonization reaction of $CaCO_3$ at $750^{\circ}C$ and weight reduction rate of 10%. The microstructures were agglomerated amorphous and observed rhombohedral calcite crystals by scanning electron microscope. It is considered that the pointing of Yeojang is a mortar mixed with lime and soil. In addition the Hanbongseong Yeojang was constructed using the same materials and construction technique because the minerals composition is not different according to the Yeojang location and use.