• Title/Summary/Keyword: 카라슈바 곱셈 방법

Search Result 4, Processing Time 0.023 seconds

A New Low Complexity Multi-Segment Karatsuba Parallel Multiplier over $GF(2^n)$ (유한체 $GF(2^n)$에서 낮은 공간복잡도를 가지는 새로운 다중 분할 카라슈바 방법의 병렬 처리 곱셈기)

  • Chang Nam-Su;Han Dong-Guk;Jung Seok-Won;Kim Chang Han
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.41 no.1
    • /
    • pp.33-40
    • /
    • 2004
  • The divide-and-conquer method is efficiently used in parallel multiplier over finite field $GF(2^n)$. Leone Proposed optimal stop condition for iteration of Karatsuba-Ofman algerian(KOA). Ernst et al. suggested Multi-Segment Karatsuba(MSK) method. In this paper, we analyze the complexity of a parallel MSK multiplier based on the method. We propose a new parallel MSK multiplier whose space complexity is same to each other. Additionally, we propose optimal stop condition for iteration of the new MSK method. In some finite fields, our proposed multiplier is more efficient than the KOA.

An Efficient Architecture for Modified Karatsuba-Ofman Algorithm (불필요한 연산이 없는 카라슈바 알고리즘과 하드웨어 구조)

  • Chang Nam-Su;Kim Chang-Han
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.43 no.3 s.345
    • /
    • pp.33-39
    • /
    • 2006
  • In this paper we propose the Modified Karatsuba-Ofman algorithm for polynomial multiplication to polynomials of arbitrary degree. Leone proposed optimal stop condition for iteration of Karatsuba-Ofman algorithm(KO). In this paper, we propose a Non-Redundant Karatsuba-Ofman algorithm (NRKOA) with removing redundancy operations, and design a parallel hardware architecture based on the proposed algorithm. Comparing with existing related Karatsuba architectures with the same time complexity, the proposed architecture reduces the area complexity. Furthermore, the space complexity of the proposed multiplier is reduced by 43% in the best case.

Efficiently Hybrid $MSK_k$ Method for Multiplication in $GF(2^n)$ ($GF(2^n)$ 곱셈을 위한 효율적인 $MSK_k$ 혼합 방법)

  • Ji, Sung-Yeon;Chang, Nam-Su;Kim, Chang-Han;Lim, Jong-In
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.44 no.9
    • /
    • pp.1-9
    • /
    • 2007
  • For an efficient implementation of cryptosystems based on arithmetic in a finite field $GF(2^n)$, their hardware implementation is an important research topic. To construct a multiplier with low area complexity, the divide-and-conquer technique such as the original Karatsuba-Ofman method and multi-segment Karatsuba methods is a useful method. Leone proposed an efficient parallel multiplier with low area complexity, and Ernst at al. proposed a multiplier of a multi-segment Karatsuba method. In [1], the authors proposed new $MSK_5$ and $MSK_7$ methods with low area complexity to improve Ernst's method. In [3], the authors proposed a method which combines $MSK_2$ and $MSK_3$. In this paper we propose an efficient multiplication method by combining $MSK_2,\;MSK_3\;and\;MSK_5$ together. The proposed method reduces $116{\cdot}3^l$ gates and $2T_X$ time delay compared with Gather's method at the degree $25{\cdot}2^l-2^l with l>0.

The Most Efficient Extension Field For XTR (XTR을 가장 효율적으로 구성하는 확장체)

  • 한동국;장상운;윤기순;장남수;박영호;김창한
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.12 no.6
    • /
    • pp.17-28
    • /
    • 2002
  • XTR is a new method to represent elements of a subgroup of a multiplicative group of a finite field GF( $p^{6m}$) and it can be generalized to the field GF( $p^{6m}$)$^{[6,9]}$ This paper progress optimal extention fields for XTR among Galois fields GF ( $p^{6m}$) which can be aplied to XTR. In order to select such fields, we introduce a new notion of Generalized Opitimal Extention Fields(GOEFs) and suggest a condition of prime p, a defining polynomial of GF( $p^{2m}$) and a fast method of multiplication in GF( $p^{2m}$) to achieve fast finite field arithmetic in GF( $p^{2m}$). From our implementation results, GF( $p^{36}$ )longrightarrowGF( $p^{12}$ ) is the most efficient extension fields for XTR and computing Tr( $g^{n}$ ) given Tr(g) in GF( $p^{12}$ ) is on average more than twice faster than that of the XTR system on Pentium III/700MHz which has 32-bit architecture.$^{[6,10]/ [6,10]/6,10]}$