• Title/Summary/Keyword: 침하예측기법

Search Result 89, Processing Time 0.033 seconds

A Comparative Study on the Prediction of the Final Settlement Using Preexistence Method and ARIMA Method (기존기법과 ARIMA기법을 활용한 최종 침하량 예측에 관한 비교 연구)

  • Kang, Seyeon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.20 no.10
    • /
    • pp.29-38
    • /
    • 2019
  • In stability and settlement management of soft ground, the settlement prediction technology has been continuously developed and used to reduce construction cost and confirm the exact land use time. However, the preexistence prediction methods such as hyperbolic method, Asaoka method and Hoshino method are difficult to predict the settlement accurately at the beginning of consolidation because the accurate settlement prediction is possible only after many measurement periods have passed. It is judged as the reason for estimating the future settlement through the proportionality assumption of the slope which the preexistence prediction method computes from the settlement curve. In this study, ARIMA technique is introduced among time series analysis techniques and compared with preexistence prediction methods. ARIMA method was predictable without any distinction of ground conditions, and the results similar to the existing method are predicted early (final settlement).

A Study on the Prediction of Long-Term Settlement by the Modified Hyperbolic Method (수정된 쌍곡선 법을 이용한 장기 침하량 예측)

  • Yoo, Han-Kyu;Kim, Jong-Hee
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.3
    • /
    • pp.163-172
    • /
    • 2000
  • 최종침하 예측기법들은 분석상 간단명료하고 경제적인 기법이라 현장에서 널리 이용되고 있지만, 현장계측상의 문제들이 다분히 있는 실측치에 크게 의존함으로써 설계단계에서 침하량예측에 분석가의 주관적 판단이 큰 변수로 작용할 수 있으므로 객관성이 결여되는 결점을 안고 있다. 그 중 쌍곡선법(Hypervolic Method)이 가장 널리 쓰이고 있지만, 현장 계측치에 따라 가정 기본식의 선형성이 다소 뚜렷하지 않아 분석가에 따라 해석결과가 다르게 나타날 수 있으므로, 기술 적용상의 어려움과 경제적 비용을 더욱 가중시키는 결과를 초래할 수 있다. 따라서, 본 연구에서는 현장 계측자료 분석에 있어서 대표적으로 널리 적용되고 있는 쌍곡선법의 기본 가정식의 선형성 문제에 주안점을 두어 기본 가정식의 선형성을 확보하고, 그 선형구간을 확장한 새로운 침하예측기법을 제안하였다. 성토완료 직후의 현장 자료를 배수재가 설치된 지역과 배수재가 설치되지 않은 지역으로 구분하여 최종 1차 압밀침하량, 수직압밀계수 등을 기존예측기법 및 현장계측자료와 비교 검토하여 제안된 침하예측기법의 적용성을 검증하였다.

  • PDF

A Study on the Applicability of Settlement Prediction Method Based on the Field Measurement in Gimpo Hangang Site (김포한강지구 계측자료를 이용한 침하예측기법의 적용성에 관한 연구)

  • Lee, Jungsang;Jeong, Jaewon;Choi, Seungchul;Chun, Byungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.12
    • /
    • pp.35-42
    • /
    • 2012
  • There are many large-scale coastal region landfill and land development by loading to use territory efficiently, this regions are mostly soft clay ground. Constructing structures and road on the soft ground bring about engineering problems like ground shear fracture and a big amount of consolidation by bearing capacity. Improvement of soft soil is required to secure soil strength and settlement control. In improvement of soft soil, predict for the amount of settlement based on field surveyed reports are important element for estimating pre-loading banking height and the final point of consolidation. In this study, there is calculating theoretical settlement by analyzing field surveyed report and ground investigation to improvement of soft soil with pre-loading and vertical drain method. And present settlement prediction method reflect soil characteristics in Gimpo Hangang site by analysing prediction settlement and observational settlement during compaction using hyperbolic, ${\sqrt{s}}$, Asaoka method.

Application of Fuzzy Reasoning Method for Prediction of Subsidence Occurrences in Abandoned Mine Area (폐광산 지역에서의 지반침하예측을 위한 퍼지추론기법 적용 연구)

  • Choi, Sung-O.;Kim, Jae-Dong;Choi, Gwang-Su
    • Tunnel and Underground Space
    • /
    • v.19 no.5
    • /
    • pp.463-472
    • /
    • 2009
  • Many old domestic mines were excavated with the room and pillar method or the sublevel caving method and they involve the great possibility of surface subsidence, especially in the shallow depth mines. In most of these cases, the mine roadways and openings are very irregular in shape and the information about the local geology is uncertain. Consequently it is not simple to standardize the estimation method for the possibility of subsidence, especially the sinkhole subsidence. In this study, the fuzzy reasoning method has been applied for development of estimating the possibility of subsidence occurrence in abandoned mine area. This method has the advantage in producing the reliable estimation results with a simple performance procedure even when the precise information on the local geology and mining conditions is rare. For the verification of applicability of this method, the developed method has been applied to Kumho mine in Bonghwa, Kyungbook province and the Choong-ju mine in Iryu, Choongbook province where the surface subsidence occurred already.

Newly Developed Settlement Prediction Method on Soft Soils with Subsequent Surcharge Change (성토고 변화를 고려한 새로운 연약 지반 침하 예측 기법)

  • Chun, Sung-Ho;Kim, Han-Saem;Yune, Chan-Young;Chung, Choong-Ki
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.5C
    • /
    • pp.155-162
    • /
    • 2011
  • Settlement prediction based on field monitored data, which is used to control subsequent surcharges, is very important in construction management for soft ground improvement with the preloading method. Observational settlement prediction methods, which are suggested for an instantaneous loading, have been widely used in fields. However, they have difficulties in the settlement prediction with subsequent surcharge change. In this paper, a simple method to predict the settlement with subsequent surcharge change is suggested. The suggested method adopts assumptions to simplify the complex field condition and utilizes observational methods. The suggested method is applied to a large consolidation test result, FDM analysis results, and field monitored settlement data to confirm its practicability. From the applications, the suggested method produces reasonable prediction results with various subsequent surcharge changes.

Settlement Prediction for Staged Filling Construction Using SPSFC Method (SPSFC법을 이용한 단계성토 시 침하량 예측)

  • Kang, Seonghyeon;Kim, Taehyung
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.12
    • /
    • pp.97-107
    • /
    • 2014
  • Settlement prediction has been conducted using Hyperbolic, Hoshino, and Monden methods, etc in the fields. These methods are only able to predict settlement after finishing the final filling stage. A new method is proposed to make up for such a weak point. This method was named as SPSFC (Settlement Prediction for Staged Filling Construction) method, which can be able to predict the settlement both the final filling stage and the staged filling from the initial filling stage in soft ground. To verify the applicability of the SPSFC method, firstly. The settlement predicted by the existed methods are compared with that obtained by the SPSFC method. The comparison results indicate the SPSFC has enough reliability to use for prediction of settlement. Secondly. by analyzing the settlement data measured during the initial filling stage, the soil parameters which need to predict the settlement are obtained by the SPSFC method. Then using the obtained soil parameters the time-settlement curve is predicted and compared. The predicted settlement is well matched with the measured one. From the study, the SPSFC method can be possible to predict settlement during the staged filling with only the initial settlement data.

A Study on the Evaluation of Reliability for Settlement Predictions by Hyperbolic Method (침하예측을 위한 쌍곡선 식의 신뢰성 평가에 관한 연구)

  • 이승우;김유석
    • Geotechnical Engineering
    • /
    • v.13 no.6
    • /
    • pp.5-12
    • /
    • 1997
  • Predictions of settlements under preloading for the improvement of soft soil is a very important element of construction management. Due to the non uniformity, difficulty of estimating resonable soil properties, predictions of settlements and settlement velocities at the design stage seldom agree with the actual future settlements. To overcome this problem, the prediction methods based on the settlement observation of initial preloading stage such as hyperbolic method and Asaoka method have been employed frequently. However the estimating method for the reliability of these predictions at the time of prediction has not been suggested. In this study, comparisons of predicted settlements by hyperbolic met hed and observed settlements are explored through case studies. And a stratagem of estimating reliability of settlement predictions by hyperbolic method is suggested as the result of investigation on the relationship between the initial observed time and error of settlement prediction by hyperbolic method.

  • PDF

Prediction of Settlement of SCP Composite Ground using Genetic Algorithm (유전자 알고리즘 기법에 근거한 SCP 복합지반의 침하 예측)

  • 박현일;김윤태;이형주
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.16 no.2
    • /
    • pp.64-74
    • /
    • 2004
  • In order to accelerate the rate of consolidation settlement, to reduce settlement, and to increase bearing capacity for soft ground under quay wall, sand compaction pile method (SCP) has widely been applied. Improved ground is composite ground which is consisted of the sand pile-surrounding clayey soil. As caisson and upper structures are installed on SCP composite ground, the settlement is compositively occurred by elastic compression of sand compaction piles and also consolidation of the surrounding clay ground. In this study, the combined settlement model is proposed to predict the settlement of SCP composite ground in basis of elastic theory for sand compaction pile and consolidation theory for marine soft clay. Optimization technique was performed based on back-analysis so that real coded genetic algorithm was applied to estimate the parameters of the proposed settlement model. Case analysis was carried out for a domestic SCP composite ground to examine the applicability of the proposed prediction technique.

Prediction Technique of Vibration Induced Settlement -On the Basis of Case Studies (지반 진동에 의한 주변침하 예측기법 사례 연구를 중심으로)

  • 김동수;이진선
    • Geotechnical Engineering
    • /
    • v.12 no.5
    • /
    • pp.103-116
    • /
    • 1996
  • Man-made vibrations from traffic and construction activities are important because they may cause damage to structures. The current literature provides that damages in the urban areas were not caused by direct transmission of vibration, but rather through subsequent settlement caused by soil densification. In this paper. prediction technique of ground borne vibration induced settlement was introduced on the basis of case studies. In situ application technique of the settlement prediction model developed in laboratary was described, and the predicted settlement was compared with the measured settlement from case studies. The settlement from case studies hlatched well with the settlement calculated from the model. The parametric studies of settlement in typical urban site conditions were performed to determine the sensitive parameters and to develop reliable vibration monitoring and interpretation schemes. These demonstrated the potential usefulness of the model for the evaluation and prediction of the vibration induced in-situ settlement of sands.

  • PDF

Prediction of Ground Subsidence Hazard Area Using GIS and Probability Model near Abandoned Underground Coal Mine (GIS 및 확률모델을 이용한 폐탄광 지역의 지반침하 위험 예측)

  • Choi, Jong-Kuk;Kim, Ki-Dong;Lee, Sa-Ro;Kim, Il-Soo;Won, Joong-Sun
    • Economic and Environmental Geology
    • /
    • v.40 no.3 s.184
    • /
    • pp.295-306
    • /
    • 2007
  • In this study, we predicted areas vulnerable to ground subsidence near abandoned underground coal mine at Sam-cheok City in Korea using a probability (frequency ratio) model with Geographic Information System (GIS). To extract the factors related to ground subsidence, a spatial database was constructed from a topographical map, geo-logical map, mining tunnel map, land characteristic map, and borehole data on the study area including subsidence sites surveyed in 2000. Eight major factors were extracted from the spatial analysis and the probability analysis of the surveyed ground subsidence sites. We have calculated the decision coefficient ($R^2$) to find out the relationship between eight factors and the occurrence of ground subsidence. The frequency ratio model was applied to deter-mine each factor's relative rating, then the ratings were overlaid for ground subsidence hazard mapping. The ground subsidence hazard map was then verified and compared with the surveyed ground subsidence sites. The results of verification showed high accuracy of 96.05% between the predicted hazard map and the actual ground subsidence sites. Therefore, the quantitative analysis of ground subsidence near abandoned underground coal mine would be possible with a frequency ratio model and a GIS.