• Title/Summary/Keyword: 침투손실량

Search Result 40, Processing Time 0.028 seconds

A Presentation of a Procedure Calculating Rainfall Excess in Discrete Time by Use of Horton Infiltration Model in a Basin (유역 단위에 Horton 침투모형에 의한 이산시간 단위 초과우량 산출 절차의 소개)

  • Yoo, Ju-Hwan;Yoon, Yeo-Jin
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2011.05a
    • /
    • pp.89-89
    • /
    • 2011
  • 한 유역에서 유출 모형의 성공을 좌우할 수 있는 중요한 요소 중 하나는 강수 손실량(precipitation loss)을 결정하는 것이다. 손실량은 홍수 예측이나 수자원 평가를 위한 유출 모형의 주요 입력 자료가 된다. 만족할 만한 유출 모형을 구현하기 위해서는 손실량의 정확한 평가가 요구된다(Najafi, 2003). 총 강우량 중에서 손실량을 뺀 초과 강우량 또는 유효 강우량은 치수적 측면이든 이수적 측면에서 요구되는 직접 유출량(direct runoffs)에 상당하는 규모로서 유출 모형에서 매우 중요하다. 이제까지 많은 경우에 직접 유출되는 유효 강수량은 총강수량에서 주요 손실량 성분인 침투량을 감하여 산출하여 왔다. 이 때 침투량은 호우사상별로 적게는 유출량의 30%에서 많게는 100%까지 차지할 만큼 주요한 손실 성분으로 취급되었다(Chow, 1964 ; Singh, 1989). 침투량을 산정하기 위한 기존 모형내 포함되는 매개변수 값은 실용적으로 잘 정립되지 않았기 때문에 유출 모형에 실제 적용하는데 어려움이 있다. 한편 침투량 산정 모형 중에 Horton 모형은 가장 잘 알려져 있는 모형 중 하나이다(Horton, 1939 ; 1940). 후속 성과(Blake et al., 1968; Rawls et al., 1976)은 있었지만 모형내 매개변수 값을 결정해야 하는 실용상의 어려운 점이 있다(Singh, 1989). 그리고 국내 초과 강수량 산출 모형에 관한 연구사례가 다수(조홍제,1986; 남선우와 최은호, 1990; 정성원과 김승, 1991; 안태진 등, 2000; 박햇님과 조원철, 2002; 유주환, 2006) 있었지만 시간적으로 연속함수를 갖는 Horton 침투 모형을 실무적으로 이산화 하여 적용할 수 있도록 하는 방법의 절차 및 원칙이 제시되지 않아 유출 모형에 직접 적용하기 쉽지 않은 형편이다. 이에 본 발표에서는 한 유역에서 Horton 매개변수를 결정한 기존 연구(2006, 유주환)의 성과를 적용한 Horton 침투모형을 강수사상별 이산화한 시간별로 적용하는 절차와 적용 원칙을 소개하고자 한다.

  • PDF

An Offer of a Procedure Calculating Hourly Rainfall Excess by Use of Horton Infiltration Model in a Basin (유역 단위 Horton 침투모형을 적용한 시간단위 초과우량 산출 절차 제시)

  • Yoo, Ju-Hwan
    • Journal of Korea Water Resources Association
    • /
    • v.43 no.6
    • /
    • pp.533-541
    • /
    • 2010
  • It is basic for a flood prediction to calculate direct runoff from rainfall in a basin by the rainfall-runoff model. The direct runoff is calculated from rainfall excess or effective rainfall based on a rainfall-runoff model. The total rainfall minus rainfall loss equals rainfall excess with time. This loss can be treated equal to an infiltration loss under the assumption that the infiltration is a major one among the losses in the rainfall-runoff model. Practically obtaining the infiltration loss $\Phi$ index method, W index method or modified ones of these have been used. In this study it is assumed the loss of rainfall in a basin be a well-known Horton infiltration mechanism. And in case that the parameter set is given in the Horton infiltration model a procedure and assumption for calculating hourly infiltration loss and rainfall excess are offered and the results of its application are compared with those of $\Phi$ index method. By this study it is well shown the value of Horton infiltration function is exponentially decay with time as the Horton infiltration mechanism.

Changes of Nutrient Concentrations in Root Zone of a Paddy Plot and Nutrient losses via Infiltration during the Rice Cultivation Period (영농기 필지논의 근역 영양물질 농도 변화 및 침투손실량)

  • Yoon Kwang-Sik;Cho Jae-Young;Choi Jin-Kyu;Son Jae-Gwon;Han Kuk-Heon;Kim Young-Joo;Choi Jin-Yong
    • KCID journal
    • /
    • v.9 no.1
    • /
    • pp.59-69
    • /
    • 2002
  • Changes of concentrations and losses of nutrient via infiltration from paddy plot during rice cultivation were monitored. The infiltrated water samples were collected in a ceramic porous cup which was buried at the depth of 30,50,70, and 90cm beneath the

  • PDF

Comprehension of the infiltration characteristics of the Han stream basin in Jeju Island using the flow observation data (관측자료를 이용한 제주도 한천 유역의 침투 특성 파악)

  • Kang, Minseok;Song, Sunguk;Jeong, Jinung;Yoo, Chulsang
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.108-108
    • /
    • 2020
  • 본 연구에서는 관측자료를 이용하여 제주도 한천 유역의 침투 특성을 파악하고자 하였다. 이를 위해 2012년부터 2019년까지 제주도 한천 유역의 주요 호우사상을 선정하고 한천 하류부의 위치한 제2동산교 지점의 유출량 자료를 이용하였다. 먼저 호우사상별 유출량 자료를 이용하여 유효우량(또는 유출고) 산정하고 초기손실을 결정하였다. 다음으로 유효우량과 초기손실을 NRCS CN 방법에 적용하여 최대잠재보유수량과 CN을 산정하였다. 산정된 호우사상별 CN 및 초기손실을 검토하기 위해 선행일수에 따른 선행강우량과 유출량과의 관계와 강우-유출 과정의 각 요소 간의 관계를 확인하였다. 마지막으로 초기손실, 최대잠재보유수량, CN 등 각 요소들의 분포와 이상치를 확인하여 제주도 한천 유역의 적절한 CN 및 초기손실의 규모를 검토하였으며, 그 결과, 제주도 한천 유역의 적절한 초기손실, 최대잠재보유수량, α, 지체시간의 규모는 각각 30 mm~40 mm, 170 mm~190 mm, 0.20~0.23, 50~60, 60 min~90 min으로 나타났다.

  • PDF

Improvement on L-THIA ACN-WQ model for expanded application to the watersheds (유역 확대 적용을 위한 L-THIA ACN-WQ 모형의 개선)

  • Kum, Donghyuk;Park, Youn Shik;Ryu, Jichul;Jeon, Ji-Hong;Lim, Kyoung Jae
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.315-315
    • /
    • 2018
  • L-THIA ACN-WQ 2016 모형 개선 연구에서는 침투량 산정, 다중 기상지점 등 유역 규모 확대를 목적으로 엔진 개선과 모형의 최적 매개변수 선정을 위해 최적화 알고리즘을 활용한 자동보정 모듈을 개발하였다. 개선된 침투량 초기손실 산정 계수를 적용한 침투량 산정 방법을 Green-Ampt 모형의 침투량 산정 결과와 비교한 결과 편차는 매우 작았으며, Green-Ampt 모형을 통해 산정된 침투량 범위 내에 분포되어 개선된 침투량 산정 방법의 결과가 유효한 값을 의미하는 것으로 나타났다. 이렇게 도출된 초기손실 산정 계수를 관계식으로 개발하여 L-THIA ACN-WQ 2018 모형 내에서 CN에 따른 초기손실량이 산정되도록 하였고, 이를 기반으로 침투량 및 기저유출량이 산정된다. 유역 규모 확대를 위해 다중 기상지점이 적용되도록 엔진 코드를 개선하였으며, 평창A와 고부A 유역을 대상으로 단일 기상지점과 다중 기상지점 적용에 따른 유출 해석을 유량지속곡선을 통해 비교 한 결과 다중 기상지점 적용에 따라서 평창A와 고부A 유역 모두 유황구간이 크게 달라지는 것으로 나타났다. 특히 고부A 유역은 우황 변동 특성이 크게 나타났는데, 지역적 강우 특성이 뚜렷한 유역에서는 유출해석에 매우 중요한 영향인자로 작용되는 것으로 알 수 있었다. 마지막으로 L-THIA ACN-WQ 2018모형을 이용함에 있어 유역 특성에 알맞은 최적 매개변수 산정을 위해 유량 및 TN, TP 자동보정 툴을 개발하였다. 자동보정툴은 2개의 보정방안으로 개발하였다. 첫 번째는 유역 전체에 대해 하나의 최적매개변수를 도출하는 것이며, 두번째는 유역 내 다중 보정 지점을 통해 소유역별 최적매개변수를 도출하는 것이다. 이를 통해 사용자는 모형의 활용 목적 및 가용 가능한 보정 자료 등을 고려하여 모형의 최적 매개변수를 도출할 수 있다. 이렇게 개선된 L-THIA ACN-WQ 2018 모형을 총량단위유역 한강 평창A와 금강 고부A에 적용한 결과 유량은 NSE 0.76, 0.85로 매우 높게 나타났으며, TN, TP의 NSE는 0.64 ~ 0.86 로 매우 높은 적용성 결과가 도출되었다. Ryu(2016)의 연구 결과와 비교해보면 평창A는 NSE와 $R^2$ 수치로는 큰 차이를 보이지 않았지만, 유량 모의에서 일별 예측값 변화 폭에 큰 변화가 있는 것으로 나타났다. 기존 L-THIA ACN-WQ 2016모형 결과에서는 일별 유량의 변동성이 매우 크지만, L-THIA ACN-WQ 2018 모형에서는 일별 유량 변동폭이 크게 감소하여, 유량 모의에 큰 개선 효과가 있는 것으로 나타났다

  • PDF

A Comparative Study on the Runoff Models for Runoff Estimation in Urban Catchment (도시유역에서 유출량 산정을 위한 유출모형의 비교연구)

  • Shin, Chang Dong;Lee, Jung Sik
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2004.05b
    • /
    • pp.640-645
    • /
    • 2004
  • 본 연구에서는 도시유역에서 보다 합리적인 유출량 산정을 위한 도시유출모형의 적용성을 검토하기 위하여 기존의 도시유출모형 중 ILLUDAS 모형, SWMM 모형, SMADA 모형을 이용하였으며, 이들 3가지 모형을 대상유역인 동의대 유역에 적용하여 모형에 의한 모의 결과치를 유역의 실측수문량과의 비교를 통해 적용성이 우수한 모형을 검토하였다 3가지 도시유출모형의 적용결과, SWMM 모형이 타 모형들에 비하여 대상유역에 대한 적용성이 우수한 것으로 나타났으며, ILLUDAS 모형의 경우 첨두유량과 첨두시간은 우수한 결과를 나타내었으나 총유출량의 오차는 크게 나타났다. SMADA 모형의 경우 총유출량은 과대, 첨두유량은 과소 산정되었으며, 총유출량과 첨두유량오차가 3가지 모형중 가장 크게 나타나 대상유역에서 부적합한 모형으로 나타났다. 또한 침투능, 조도계수, 손실저류깊이를 주요 매개변수로 하여 SWMM 모형에서 매개변수의 민감도분석을 실시하였으며, 매개변수 변화에 따른 유출반응의 민감도는 침투능, 손실저류깊이, 조도계수순으로 예민하게 나타났다.

  • PDF

산지유역의 초과우량 추정 모형

  • 남선우;최은호
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 1990.07a
    • /
    • pp.49-52
    • /
    • 1990
  • 강우강도가 큰 집중호우가 지표면에 도달하게 되면 강우량중 상당 부분이 수문학적 손실성분인 침수, 증발산, 차단 및 저류등으로 시간에 따라 분포된다. 이 가운데 지표면에 분포된 식생계 및 낙엽등에 의한 차단(canopy interception effect)과, 지표가 포화시의 증발산(wetted environmental evapotranspiration) 및 각종 저류, 즉 지표면 저류(depression storage), 지표토양층에의 저류(retention storage) 성분 등을 들 수 있으며 이들 각 손실성분은 직접유출로 나타나는 초과우량의 발생시간을 지체시켜 주는 역할을 하나 차단성분 및 저류성분은 시간이 경과함에 따라 결국은 증발산 또는 침투성분으로 흡수된다. 따라서 침투성분은 초과우량 추정에 매우 큰 영향을 줄 뿐 아니라 지표면 아래의 흙의 변형을 야기시키며, 중간유출 및 지하수유출에 기여 한다. 대부분의 호우사상은 강우초기에 강우강도가 지표 흙의 침수계수(hydraulic conductivity)보다 작기 때문에 모두 각 손실성분에 의해 손실되며, 강우강도가 점차 커져 침수능을 초과하면 지표면에 순간적으로 물이 고이게 되는데 이것을 지표심수(surface ponding)라하고, 강우시작부터 이 때까지가 침수시간(ponding time)이 된다. 이 지표침수가 나타나는 순간이 곧 직접유출 시작 시간으로 볼 수 있을 뿐 아니라, 침수시간은 지표면의 물수지면에서 볼 때 초기손실량 및 침수율 결정에 중요한 인자가 된다. 본 연구에서는 각 손실 성분별로 유역의 제반 특성을 고려하여 구한 매개변수로부터 시간에 대한 손실율을 결정하여 산지 하천유역에 발생하는 부정강우사상(unsteady rainfall)의 초과우량을 추정하는 모델을 유도하였다. 대상유역으로는 현재 건설부에서 수행하고 있는 국제수문개발계획(IHP) 대표시험유역 가운데 평창강 수계내의 장평유역으로서, 본 유역은 자기 우량계 및 자기 수위계가 운용되고 있고, 인접 대관령 측후소로부터 기상자료를 획득, 이용할 수 있는 비교적 분석에 양호한 조건을 지닌 유역이다. 모델의 유도 과정은 대상유역 식생계로 피복된 산지유역임으로, 식생차단 저류효과를 고려해서 지표면의 흙에 도달되는 순강우주상도를 얻고 이로부터 침수시간 및 침투율을 결정해서 초과우량을 산정하는 모델을 유도하였다. 강우 지속시간내 즉, 유역이 완전 포화시의 증발산율의 결정은 Morton 모델로부터, 침수시간 및 침투율 결정은 Green-Ampt 방정식을 부정강우사상에 적용할 수 있도록 수정된 모델을 사용하였으며, 분석에 이용된 호우는 1986 ~ 1987년도 발생된 호우사상 가운데 강우강도 및 총 강우량이 비교적 큰 7개 강우사상을 선정하였다. 각 호우사상별로 손실율울 지표면에서 물수지개념을 이용하여 계산하고 산술지상에 구성시킨 결과는 다음 그림과 같다. 이 그림에서 굵은 실선으로 나타낸 곡선(B. L. R)은 각 손실을 곡선을 시간축에 따라 산술평균한 대표손실율곡선이다. 이 대표손실율곡선은 역지수함수형으로서 곡선식의 유도는 회기분석을 이용하였다. 초과우량 주상도를 얻기 위하여 이 대표손실을 곡선을 관측 강우주상도에 적용시켜 본 결과 식생계에 의한 차단 저류율은 약 6mm/hr 정도인 것으로 나타났으며, 이로 인한 침수시간 지체효과는 1~3시간 정도로서 비교적 그 영향이 큼을 알았다. 또한 각 호우사상별 침수시간 계산 결과 그 변동이 큰 것으로 나타났는데 이는 초기 강우강도에 민감하기 때문인 것으로 판단되낟. 한편 유역 포화시의 증발산율은 우기의 기상자료를 이용하여 구한 결과 0.05 - 0.10 mm/hr 의 범위로서 이로 인한 강우손실량은 큰 의미가 없음을 알았다.

  • PDF

Effect of Water Management after Fertilizer Application on Fate and Efficiency of Applied Nitrogen (시식 후 물관리 방법이 실소의 동태 및 이용효율에 미치는 영향)

  • 이변우;명을재;최관호
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.40 no.2
    • /
    • pp.157-166
    • /
    • 1995
  • The fate and use efficiency of applied nitrogen were evaluated in a pot experiment with different fertilizers and water management practices during 30days after fertilizer application. N-P-K compound fertilizers, 13-10-1l(F-l) for upland Crop use and 15-10-10(F-3) for rice Crop use, and mixed fertilizer, 21-17-17(F-2) for basal dressing in rice were used. Fertilizers corresponding to 1.8g N were mixed thoroughly with the whole volume of sandy loam soil in a pot. The pots were flooded upto 3cm above soil surface for O(0dF), 10(10dF), 20(20dF), and 30(30dF) days after fertilizer application and all the treatments were flooded continuously from 30 days after fertilizer application. During the flooding period water percolation rate was adjusted to 2.5mm/day. Rice seedlings were transplanted 40 days after fertilizer application. The pH of infiltrated water increased with increasing duration of flooding. The pH of F-2 was higher than those of F-1 and F-3 between which there were no differences. The applied nitrogen remained 23% in F-1, 29% in F-2, and 29.1 % in F-3, and 45.0% in 0dF, 26.6% in 10dF, 24.8% in 20dF, and 20.3% in 30dF as inorganic nitrogen at 63 days after fertilizer application. Nitrogen losses by leaching amounted to 51.3%, 32.1% and 48.1% of applied nitrogen in F-1, F-2 and F-3, respectively. Nitrogen leaching losses increased with increasing duration of flood- ing, amounting to 25.7%, 29.8%, 32.7%, and 35.8% in 0dF, 10dF, 20dF and 30dF, respectively. Gaseous loss of applied nitrogen was greatest in F-2, followed by F-1 and F-3. Total loss of nitrogen due to gaseous volatilization and leaching was greatest in F -1, followed by F -2 and F-3, and were greater in the treatments with longer flooding after fertilizer application. Nitrogen recovery by rice shoot until 72 days after transplanting were 23.2%, 24.7% and 27.4% of applied nitrogen in F-1, F-2 and F-3, respectively and 34.1%, 25.5%, 21.1%, and 21.2% in 0dF, 10dF, 20dF and 30dF, respectively.

  • PDF

Introduction of Decision Support System for Design of Low Impact Development Based on SWMM5.1: WMAM (SWMM5.1을 기반으로 한 저영향개발 시설의 설계를 위한 의사결정지원시스템: WMAM)

  • Song, Jae Yeol;Chung, Eun-Sung;Kim, Soo-Hyun;Lee, Sang-Ho
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.321-321
    • /
    • 2016
  • 도시화와 토지이용 변화로 인하여 도시지역의 불투수면적이 증가하고 있으며, 이로 인해 발생하는 홍수, 가뭄, 수질악화 등의 해결은 수자원 계획 및 관리에 있어서 중요한 과제이다. 저영향개발(LID, Low Impact Development) 기법은 물 순환 체계를 복원할 수 있는 대안으로 도시지역에서 물 관리를 통해 하천 복원 및 수자원 관리를 가능하게 해주는 기술로써, EPA SWMM의 업그레이드 버전에서는 저영향개발 기술과 관련된 시설의 설계를 통한 유출 모의가 가능해졌다. 그러나 SWMM 모형 내에서 저영향개발 시설을 설계 및 계획하기 위해서는 저영향시설과 관련된 다양한 매개변수들을 입력해야하며, 효과적인 시설의 설계를 위해서는 반복적인 모의 수행이 동반된다. 이에 본 연구에서는 SWMM 모형을 기반으로 저영향개발 시설의 설계를 위한 의사결정지원시스템인 WMAM(Water Management Analysis Module)을 개발하였다. WMAM은 저영향개발 시설과 관련된 다양한 매개변수 중에서 최종 유출량에 영향을 미치는 매개변수의 추출이 가능하다. 또한, 저영향개발 시설의 설계 및 계획 매개변수에 대한 다양한 시나리오를 생성하고, 짧은 시간에 동시에 모의 분석을 수행하여 수문학적 측면에서 효과적인 시나리오를 도출해준다. 본 연구에서는 WMAM의 효과성을 보여주고자 A대학교를 모델링한 SWMM 모형에 저영향개발 시설 중 하나인 침투트렌치의 (1)계획 전과 (2)계획 후, 그리고 (3)WMAM을 적용하였을 경우의 첨두유량과 침투손실 결과를 비교하였다. 침투트렌치 설치 전의 첨두유량은 약 0.48 CMS로 세가지 경우 중 가장 높은 값을 보였으며, 침투트렌치 설지 후와 WMAM을 활용한 경우의 첨두유량은 점차 낮아졌다. 또한, 침투손실량을 보면 설치전에는 약 0.28 m로 가장 낮았으며, 설치 후 그리고 WMAM을 활용하였을 경우는 점차 그 값이 높아졌다. 본 연구를 통해, WMAM이 저영향개발 시설의 설계 및 계획에 있어서 수문학적으로 효과적인 결과를 보이는 것을 확인할 수 있었으며, 향후 보완과 추가 개발을 통해 수자원 계획 및 관리에 있어서 유용한 프로그램이 될 수 있을 것으로 기대된다.

  • PDF

Losses of Chemical Components by Infiltration Water during the Rice Cultivation at Silt Loam Paddy soil (영농기간 지하침투수에 의한 미사질양토 논의 화학성분 손실량)

  • Han, Kang-Wan;Cho, Jae-Young;Son, Jae-Gwon
    • Korean Journal of Environmental Agriculture
    • /
    • v.17 no.3
    • /
    • pp.268-273
    • /
    • 1998
  • Changes of chemical component and losses of chemical fertilizer by infiltration water from 0.5ha of paddy field in Chinan area of Chonbuk province during the rice cultivation were investigated. The infiltration water samples were collected in a ceramic porous cup which was a buried at the 30, 50, 70, 90㎝ of soil depth. pH of infiltration water ranged $6.64{\sim}7.90$ and EC showed $324{\sim}647{\mu}$S/cm. The content of total-N, $NH_4-N$ and $NO_3-N$ were $0.58{\sim}14.59$, $0.05{\sim}4.25$, and $0.15{\sim}7.71mg/L$ respectively. The content of total-P and ortho-P were $0.009{\sim}0.077mg/L$ and $0{\sim}0.029mg/L$ The content of $Ca^{++}$, $Mg^{++}$, $Na^{+}$ and $K^{+}$ showed $0.88{\sim}4.78$, $0.22{\sim}1.04$, $0.17{\sim}0.98$, and $0.84{\sim}3.19㎎/L$. These all at the first transplanting are higher than that of other periods. The content of $SO_4^{2-}$ showed $3.92{\sim}18.72mg/L$ and decreased with a soil depth. However $Cl^-$ of infiltration water ranged $9.03{\sim}19.97mg/L$ and no difference with a soil depth. When infiltrated $2,416.5m^{3}$ of an infiltration water from 0.5ha of paddy field during the rice cultivation, losses of chemical components were 20.34㎏/㏊ of total-N, 3.54㎏/㏊ of $NH_4-N$, 10.44㎏/㏊ of $NO_3-N$, 0.16㎏/㏊ of total-P and 0.028㎏/㏊ of ortho-P. Also $Ca^{++}$, $Mg^{++}$, $Na^+$, $K^+$, $SO_4^{2-}$ and $Cl^-$ were lost 10.24, 2.84, 2.84, 7.22, 50.04 and 62.20㎏/㏊ respectively. There were lost by infiltration water 9.35% of nitrogen, 0.59% of phosphorous and 22.79% of potassium in applied chemical fertilizer.

  • PDF