• Title/Summary/Keyword: 침투성능

Search Result 443, Processing Time 0.025 seconds

Injection Characteristics Evaluation of Conductive Grout Material According to Carbon Fiber Mixing Ratio (탄소섬유 배합비에 따른 전도성 그라우트 재료의 주입특성평가)

  • Hyojun Choi;Wanjei Cho;Hyungseok Heo;Teawan Bang;Chanyoung Yune
    • Journal of the Korean GEO-environmental Society
    • /
    • v.24 no.1
    • /
    • pp.15-23
    • /
    • 2023
  • The grouting method is a method of construction for the purpose of waterproofing and reinforcing soft ground. When grout is injected into the ground, there are various types of penetration and diffusion of grout depending on the shape of the ground, the size of soil, the porosity, and the presence or absence of groundwater. the current situation. Therefore, in this study, to investigate the penetration performance of the grouting to conductive material, laboratory tests were performed on the addition of the conductive material. In the injection test, 0%, 3%, and 5% of the mixed water were added as conductive materials to the grout, and the original ground condition was composed of various types of ground composed of gravel and silica sand. Conductive grout is injected by pressure into the model ground using a dedicated injection device, and the injection time (t), pressure (p), flow rate (v) and injection amount (q) are measured, and the hardened body injected in the model ground is collected. Penetration performance was evaluated. In the results of the grout injection experiment, the amount of conductive material used and the grout injection rate showed an inverse relationship, and it was confirmed that the penetration pattern was changed according to the size of the soil particles in the model ground. The grout containing the conductive material has relatively good penetration into the ground and excellent strength and durability of the hardened body, so it was judged that it could be used as an additive for measuring the penetration range of the grout.

Effects of Fine Aggregate Size on Penetration Performances of SSPM (잔골재의 입도분포가 SSPM의 침투성능에 미치는 영향)

  • Yoon, Hyun-Kwang;Youn, Da-Ae;Lee, Chan-Woo;Park, Wan-Shin;Yun, Hyun-Do
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.3
    • /
    • pp.25-31
    • /
    • 2019
  • This study was conducted to evaluate the penetration performance of the Silane Surface Protection Material (SSPM) penetrating the micro pore of concrete surface. The results was indicated microstructure, porosity and penetration depth of applied SSPM. Silica sand and conventional sand were used as fine aggregate in mortar. And liquid and cream types SSPM were used. The amounts of SPM were applied the 127, 255, 382, 510 g/m2 on the surface of mortar. The penetration depth specimens were made with $100{\times}30mm$ in according with KS F 4930. Penetration depth was evaluated according to KS F 4930, divide specimen and then spraying with water in cross section of specimens, and measure the depth of the non-wetted area. The microstructure result of mortar applied SSPM, it was obtained liquid and cream SSPM in mortar. The porosity results of SSPM application specimens were improved with than that of plain specimens. Test results indicated that the penetration depth of SPM were improved with increasing in amounts of SSPM. As a result of test, application of SSPM to concrete surface, it will improve durability.

The Chloride Ion Diffusion Characteristics of High Performance Lightweight Concrete Using Metakaolin (메타카올린을 사용한 고성능 경량 콘크리트의 염소이온 확산 특성)

  • Lee, Changsoo;Kim, Youngook;Nam, Changsik
    • Journal of the Society of Disaster Information
    • /
    • v.7 no.1
    • /
    • pp.21-31
    • /
    • 2011
  • The objectives of this study is replaced Silicafume with Metakaolin that is used to lightweight concrete to better performance. So, this study made high-performance lightweight concrete using Metakaolin and characteristics of the fundamental properties and chloride ion diffusion. Consequently, it is compressive strength and chloride ion penetration resistance is lower than lightweight concrete using Silicafume, the performance of compressive strength contrast Silicafume is about 88 to 95%. Also, this study got a content result because the chloride ion penetration resistance showed the performance in around 80 to 90%. As a result, this study insist that replacement ratio of Metakaolin is suitable for 10 to 15%.Silicafume and Metakaolin have similar characteristics. In addition, it is similar to the performance of alternative materials is possible.

Prediction of chloride penetration into hardening concrete (경화중 콘크리트의 염해 침투성능에 관한 연구)

  • Fan, Wei-Jie;Wang, Xiao-Yong
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.05a
    • /
    • pp.50-51
    • /
    • 2015
  • In marine and coastal environments, penetration of chloride ions is one of the main mechanisms causing concrete reinforcement corrosion. Currently, most of experimental investigations about submerged penetration of chloride ions are started after the four weeks standard curing of concrete. The further hydration of cement and reduction of chloride diffusivity during submerged penetration period are ignored. To overcome this weak point, this paper presents a numerical procedure to analyze simultaneously cement hydration reaction and chloride ion penetration process. First, using a cement hydration model, degree of hydration and phase volume fractions of hardening concrete are determined. Second, the dependences of chloride diffusivity and chloride binding capacity on age of concrete are clarified. Third, chloride profiles in hardening concrete are calculated. The proposed numerical procedure is verified by using chloride penetration test results of concrete with different mixing proportions.

  • PDF

Development and Application of Engineering Ceramics by Reaction Sintering (액상 반응소결에 의한 세라믹 구조재료의 개발 및 응용)

  • 한인섭;우상국;배강;홍기석;이기성;서두원
    • Proceedings of the KAIS Fall Conference
    • /
    • 2000.10a
    • /
    • pp.42-42
    • /
    • 2000
  • 반응소결 탄화규소는 소결체 내에 잔존 실리콘이 남아 있어 고온강도의 감소를 초래하는 단점이 있어 고온 구조재료로서의 사용이 제한되어 왔다. 따라서 이러한 문제점을 해결하기 위한 방법으로 Si 단독으로 용응침투시키는 대신 Si-MoSi₂를 침투시키는 방법이 시도되고 있으며, 이외에도 TiC 성형체에 Co, Ni 등의 금속, ZrB₂ 성형체에 Zr 금속 등을 용융, 침투시켜 성능향상을 유도하는 연구가 진행되고 있다. 본 연구에서는 반응소결에 대한 기본이론과 응용분야, 반응소결 비산화물계 세라믹스의 제조공정 및 이들 소결체의 미세구조와 기계적 특성 등을 소개하고자 한다.

Development of Using Technique of Impregnating Alkalization Agent to Recover Durability of Carbonated Reinforcement Concrete Structures by Fire Damages (화재로 인해 중성화된 철근콘크리트구조물의 내구성 회복을 위한 침투성 알칼리성부여제의 이용기술개발)

  • Moo-Han, Kim;Yong-Ro, Kim;Jea-Bong, Jang
    • Fire Science and Engineering
    • /
    • v.18 no.3
    • /
    • pp.18-24
    • /
    • 2004
  • Fire breaking out in carbonated reinforcement concrete structures considerably deteriorates the durability of them by propelling carbonation. However, the research and technical development to recover the durability is still in an underdeveloping stage in Korea. Therefore, this research aims to understanding the deteriorated durability of a carbonated structure, evaluating the performance of an impregnating alkalization agent to recover the durability and developing a way of using it.

Evaluating Unsaturated Hydraulic Properties of Compacted Geomaterials in Road Foundations (II) : Numerical Analysis (다져진 도로기초 재료의 불포화투수특성 평가 (II) : 수치해석)

  • Sung, Yeol-Jung;Park, Seong-Wan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.1D
    • /
    • pp.83-90
    • /
    • 2011
  • A need still exists that the unsaturated condition is to be considered when evaluating the infiltration and drainage capacity for compacted geomaterials in road foundation or embankments. For this reason, numerical analysis were used to analyze the time-dependent unsaturated infiltration and drainage condition depending on various geomaterial types. Therefore, laboratory data from the soil-water characteristic curve tests on geomaterials were adopted from previous studies. In addition, the unsaturated permeability was estimated using SWCC. Then the infiltration and drainage performance of unsaturated compacted soils were evaluated under various conditions based on the proposed method. The results demonstrated that the effect of initial suction and SWCC path on each material could be substantial and the proper application on analysis is very important to enhance the prediction on each capacity.

An Experimental Study on Water Resistance of Penetrating Water Repellency of Emulsified Silicon Type Exposed In The Outdoor Environment (옥외폭로에 따른 실리콘계 유화형 흡수방지재의 내수성에 관한 실험적 연구)

  • Shim Hyun-Bo;Lee Min-Seok
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.4 s.82
    • /
    • pp.477-484
    • /
    • 2004
  • As a part of durability improvement of concrete-structure, penetrating water repellency of liquid type is applied to concrete surface. Besides, a related standard is made recently, but the standard has been prescribe for initial settlement state of penetrating water repellency of liquid type, to the exclusion of performance variation depending time and outdoor environment factor. For measurement of performance variation, we measured the weight of outdoor exposure specimen every regular intervals and check a measured value against a measured value of different condition specimen. Moreover, after the application of penetrating water repellent, measured a adhesive strength in tension between cement-polymer modified waterproof coatings and surface of specimen. The applied penetrating water repellent is a emulsified silicon type with a deep penetration depth. In view of the results so far achieved, the more a Quantity of application and active solid content does get, the deeper penetrating water repellency of emulsion type Penetrate get longer and supplied moisture increase in quantity, a penetrating water repellency of liquid type penetrates more deep, but a quantity of water absorption increase gradually. Perhaps this result is caused by a reduction of active solid content on concrete surface, because active ingredient is moved into the concrete by dissolution.

Evaluation on the Performance of Relief Wells Using Geosynthetics Blanket Length as a Parameter in an Agricultural Reservoir Embankment (농업용 저수지 제방에서 토목섬유 블랭킷의 길이에 따른 감압정의 성능 평가)

  • Ryu, Jeonyong;Kim, Seungwook;Chang, Yongchai
    • Journal of the Korean GEO-environmental Society
    • /
    • v.23 no.6
    • /
    • pp.5-17
    • /
    • 2022
  • The performance of the relief wells installed for the purpose of controlling seepage of the dam embankment is affected by various parameters such as diameter, spacing, penetration rate, permeability coefficient of the ground, thickness of the foundation layer. Therefore, when the relief wells are adopted for the purpose of reducing seepage pressure, these parameters should be sufficiently reviewed to determine the installation specifications of the relief wells. This study evaluated the effect of the length of the geosynthetics blanket on the performance of the relief wells installed in the downstream part of the dam embankment with blankets in the upstream and downstream part of the dam embankment as countermeasure methods to control seepage of the dam embankment. In the relationship between the length of the upstream and downstream blanket and the discharge, the discharge of the relief wells decreases as the length of the upstream blanket increases, and on the other hand, the discharge of the relief wells decreases as the length of the downstream blanket increases. In the upper and lower blanket length-spacing relationship, as the length of the upstream blanket increases, the spacing of the relief wells increases and as the length of the downstream blanket increases, the spacing of the relief wells decreases. Therefore, when installing the relief wells in parallel with the blanket, it was found that increasing the length of the upstream blanket is more efficient than increasing the length of the downstream blanket in order to minimize the discharge of seepage discharge and to ensure economic feasibility by wider installation of the relief wells.