• Title/Summary/Keyword: 침출수

Search Result 954, Processing Time 0.046 seconds

The Characteristic and Control of Contaminant Transport through the Subsurface of Nanjido Landfill (난지도 매립장 지반을 통한 오염이동 특성과 제어)

  • 장연수;이광열
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.1 no.1
    • /
    • pp.1-5
    • /
    • 1994
  • The contaminant migration through the subsurface of Nanjido landfill is studied using a 2-D finite element model of contaminant transport. The leachate mounding caused by the installation of partial slurry wall around the pheriperal area of the Landfill is analysed using the finite difference model of groundwater flow. Model parameters were validated using in-situ concentration data and the behavior of the transport next 30 years is predicted. The sensitivities of chloride concentration by the change of model parameters, e.g. leachate mounding in the Landfill and the dispersivity are analysed. The results of the analyses show that the maximum chloride concentration level near Han River caused by the leachate of Nanjido Landfill would be 1488mg/1 and comes 17 years after the landfill closure. Increase of the leachate concentration is caused by the increase of both the leachate mounding and the dispersivity. However, the rate of concentration increase becomes higher with the rise of leachate mounding level, while it tends to converge a certain concentration with the increase of the dispersivity.

  • PDF

The Characteristics of Landfill Waste and Leachate on Open Dumping Landfill Site of Small Scale (소규모 단순매립지의 매립폐기물 및 침출수의 특성)

  • Ju, So-Young;Yeon, Ik-Jun;Jeon, Tae-Wan;Wi, Mi-Kyung;Kim, Kwang-Yul
    • Journal of the Korean GEO-environmental Society
    • /
    • v.1 no.1
    • /
    • pp.79-85
    • /
    • 2000
  • The environmental assessment on the open dumping landfill of small scale which was situated in local small city was carried out to reuse the landfill site as the residental, commercial and other purposes through the analysis of the leachate of landfill, extracted solution from landfill waste. The waste was landfilled at 5.5~8m depth and the covered layer so poor as 20~50cm thickness. The biodegradable organic matters were almost degraded and the result of the leachate of landfill showed that the BOD/COD ratio were measured as 0.079, pH 7.2~7.6, SS 47736mg/L, COD 6193.8mg/L, T-N 596mg/L, and T-P 123.9mg/L respectively. These results were higher than those of extracted solution of landfill waste as the COD and BOD were measured as low values and T-N 7.77mg/L and T-P as 0.20mg/L lower concentrations the landfill appears the maturation phase. As the result of the assessment on the open dumping landfill of small scale, if appears that this landfill is maturation phase and the formation leachate is reduced. If the treatment facility of leachate from landfill and the layer which protects the inflow/infiltration is prepared, it can be safely used as this landfill site.

  • PDF

An experimental study to develop operation technique of solid waste landfill for utilization of biomass (바이오매스 활용형 폐기물 매립지공법 개발을 위한 실험적 연구)

  • Kim, Hye-Jin;Park, Jin-Kyu;Jeong, Min-Kyo;Lee, Nam-hoon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.15 no.1
    • /
    • pp.171-177
    • /
    • 2007
  • In order to investigate the effect of the methanogenic bacteria in bacteria in leachate on the degradability of landfill waste, this study has created 4 cylinder-shape PVC lysimeters (Diameter: 30cm, Height: 200cm, Volume: 140L) and for the biological treatment and recirculation of the leachate, two anaerobic batch reactors (Diameter: 20cm, Height: 30cm) were created. To simulate a conventional landfill, no recycling was done in L1. In L2, 1,068ml of leachate (twice of rainfall amount) was recycled. In L3 and L4, the leachate was anaerobically digested in a dark room (with $35{\pm}1^{\circ}C$) for a week and them recycled by 1,064ml and 2,128ml, respectively, with recycled water only. In terms of cumulative $CH_4$ production, however, L3 and L4 were much higher (three times) than L1 and L2. Between L3 and L4, the latter was 1.23 times higher than the former in terms of cumulative CH4 production. In other words, the more the methanogenic bacteria-activated leachate is recycled, the more active the degradation due to active methane fermentation by the recyled methanogenic bacteria. And methane recovery is different according to the amount of recycled the methanogenic bacteria in leachate.

  • PDF

Study on Short-term Toxicological Evaluation of Treated Landfill Leachate Using Early Stage of River Puffer Fish, Takifugu obscurus (황복 Takifugu obscurus 자치어를 이용한 침출수 단기독성 연구)

  • Park, Hoon;Han, Kyung-Nam;Kim, Hyung-Sun
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.4 no.4
    • /
    • pp.298-304
    • /
    • 1999
  • Toxic effect of landfill leachate on the larvae and juvenile stage of the river puffer fish, Takifugu obscurus, were investigated in order to assess severity of environmental impact of leachate effluent on the general population of estuarine fishes. A short-term toxic experiment was designed to test both laboratory hatched larvae and juveniles (5, 10 and 15 mm in length) and in-situ juveniles (30 and 45 mm in length) using the leachate concentrations between 0 and 16%. Lethal concentrations of 50% mortality ($LC_{50}$) were observed using Spearman-karber Method. 24hr-$LC_{50}$ appeared at the leachate concentrations ranging from 3.03 to 8.57%, 48hr-$LC_{50}$ at 2.73 to 6.21 %, 72hr-$LC_{50}$o at 2.45 to 5.53%, and 96hr-$LC_{50}$ at 2.38 to 4.93%, respectively. Leachate concentrations between 0.69 and 1.51% induced 96hr-$LC_1$. Respiratory frequency was significantly affected even at low leachate concentrations between 0.5 and 1.0% (P < 0.05). These results suggest that the leachate effluents may cause a harmful impact on the physiology of river puffer fish, especially for younger cohorts.

  • PDF

Reduction of Hexavalent Chromium by Leachate Microorganisms in a Continuous Suspended Growth Culture (연속배양 체제에서의 침출수 미생물에 의한 6가 크롬이온의 환원)

  • Kim, Hyoun-Young;Oh, Young-Sook;Kim, Yeong-Kwan;Choi, Sung-Chan
    • Korean Journal of Microbiology
    • /
    • v.34 no.3
    • /
    • pp.126-131
    • /
    • 1998
  • Reduction of hexavalent chromium to its trivalent form by leachate microorganisms was studied in batch and bench-scale continuous stirred tank reactor. The inoculum was a culture of microorganisms in leachate and capable of providing up to 90% chromate reduction during 72 h batch assay with $20mg\;Cr(VI)\;L^{-1}$ in minimal media containing different levels of leachate (10 to 60%) and glucose (50 to 200 mM). Addition of glucose increased the efficiency of chromate reduction, but adverse effect was observed with increase of leachate probably due to the competitive inhibition between chromate and sulfate ions. The continuous culture experiment was conducted for 124 days using synthetic feed containing different levels of chromate (5 to $65mg\;L^{-1}$) at room temperature. With a hydraulic retention time of 36 h, chromate reduction efficiency was mostly 100% when Cr(VI) concentrations in the reactor were in the range of 5 to $50mg\;L^{-1}$ Specific rate of Cr(VI) removal was calculated as $3.492mg\;g^{-1}\;protein\;h^{-1}$ during the period of 101~124 days from the start-up which showed 81.2% of average reduction efficiency. The results indicate the potential application of using leachate microorganisms for detoxification of hexavalent chromium in various chromium-contaminated wastewater from landfill or tannery sites.

  • PDF

Prediction of Leachate Migration from Waste Disposal Site to Underground LPG Storage Facility and Review of Contamination Control Method by Numerical Simulations (수치모의를 통한 지하 LPG 저장시설에 인접한 폐기물매립지에서의 침출수이동 예측 및 제어공법 검토)

  • 한일영;서일원;오경택
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.3 no.2
    • /
    • pp.51-59
    • /
    • 1996
  • In case waste disposal site is to be constructed close to the underground facilities such as LPG storage cavern which is completely maintained by groundwater pressure, it is generally requested that the possibility on leachate contamination of cavern area be reviewed and the countermeasure, if it is estimated cavern area is severely affected by leachate, be taken into consideration. Prediction was performed and leachate control plan was made using by analytical and the numerical analysis on the leachate migration which is likely to happen at the area between the proposed waste disposal site and the underground LPG storage cavern located at the U petrochemical complex. Analytical solutions were obtained by the conservative mass advection-diffusion equation and the effect of advection and dispersion factor on the leachate migration was reviewed through peclet number calculation and the functional relationship between the factors and leachate transport velocity was established, which leads to enable us to predict the leachate transport velocity without difficulties when different parameters (factors) are used for analytical solution. Numerical solutions were obtained by FEM using AQUA2D which is for the simulation of groundwater flow and contaminant transport. 3-D discrete fracture models were simulated and fracture flow analysis was performed and feasibility study on the water-curtain system was conducted through the fracture connectivity analysis in rock mass. As results of those analyses, it was interpreted that the leachate would trespass on the LPG storage cavern area in 30 years from the proposed wate disposal site and the vertical water-curtain system was effective mathod for the prevention of leachate's migration further into the cavern area.

  • PDF