• Title/Summary/Keyword: 침착속도 근사모델

Search Result 2, Processing Time 0.019 seconds

Analysis on Particle Deposition onto a Heated Rotating Disk with Electrostatic Effect (정전효과가 있는 가열 회전원판으로의 입자침착 해석)

  • 유경훈
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.5
    • /
    • pp.424-432
    • /
    • 2002
  • Numerical analysis has been conducted to characterize deposition rates of aerosol particles onto a heated, rotating disk with electrostatic effect under the laminar flow field. The particle transport mechanisms considered were convection, Brownian diffusion, gravitational settling, thermophoresis and electrophoresis. The aerosol particles were assumed to have a Boltzmann charge distribution. The electric potential distribution needed to calculate local electric fields around the disk was calculated from the Laplace equation. The Coulomb, the image, the dielectrophoretic and the dipole-dipole forces acting on a charged particle near the conducting rotating disk were included in the analysis. The averaged particle deposition vetocities and their radial distributions on the upper surface of the disk were calculated from the particle concentration equation in a Eulerian frame of reference, along with a rotation speed of 0∼1,000rpm, a temperature difference of 0∼5K and a charged disk voltage of 0∼1000V.Finally, an approximate deposition velocity model for the rotating disk was suggested. The present numerical results showed relatively good agreement with the results of the present approximate model and the available experimental data.

Analysis on Particle Deposition on a Heated Rotating Disk (가열되는 회전원판으로의 입자 침착 해석)

  • Yu, Gyeong-Hun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.2
    • /
    • pp.245-252
    • /
    • 2002
  • Numerical analysis was conducted to characterize particle deposition on a horizontal rotating disk with thermophorectic effect under laminar flow field. The particle transport mechanisms considered were convection, Brownian diffusion, gravitational settling and thermophoresis. The averaged particle deposition velocities and their radial distributions for the upper surface of the disk were calculated from the particle concentration equation in a Eulerian frame of reference for rotating speeds of 0∼1000rpm and temperature differences of 0∼5K. It was observed from the numerical results that the rotation effect of disk increased the averaged deposition velocities, and enhanced the uniformity of local deposition velocities on the upper surface compared with those of the disk at rest. It was also shown that the heating of the disk with ΔT=5K decreased deposition velocity over a fairly broad range of particle sizes. Finally, an approximate deposition velocity model for the rotating disk was suggested. The comparison of the present numerical results with the results of the approximate model and the available experimental results showed relatively good agreement between them.