• Title/Summary/Keyword: 침전효율

Search Result 424, Processing Time 0.025 seconds

비소 오염 토양, 하천 퇴적물 및 광미의 복원을 위한 토양 세척 공정 개발에 대한 연구

  • 고일원;이광표;이철효;김경웅
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.09a
    • /
    • pp.318-321
    • /
    • 2003
  • 비소로 오염된 토양, 하천 퇴적물 및 광미의 복원할 때, 토양 세척 공정에서 중요한 인자인 비소의 화학적 결합형태와 세척제에 따른 용출특성과 고효율 세척 및 세척액의 재활용도를 높이기 위한 공정을 바탕으로 토양세척장비를 설계하였다. 화학적 결합형태에 있어서 토양은 잔류 결합형태가 주되고, 퇴적물의 경우는 철산화물과의 결합형태가 강하며, 광미는 황화물과의 결합에 따른 잔류형태와 철산화물과의 결합형태가 상당부분을 차지한다. 세척제에 따른 용출특성으로부터, 철산화물과 황화물과 결합하고 있는 비소의 화학적 결합형태를 파괴하면서 비소를 추출할 수 있는 용제로 HCl, Oxalate, EDTA, M$_2$O$_2$를 사용하였다. 추출 결과, 비소가 철산화물과 결합한 형태가 비중이 높을수록 EDTA 나 Oxalate가 효율이 높으며, 황화물에 대해서는 HCl과 $H_2O$$_2$이 상대적으로 높은 추출 효율을 보였다. 구성된 세척조는 밀폐실린더형과 스크류이송형 세척조로 구성되어 각각 혼합교반에 의한 세척과 토양입자 분급에 따른 세척이 가능하다. 세척 공정중 최적 산도 조절이 중요한 인자가 되며, 세척액의 재활용도를 높일때, 세척수에 용해되어 있는 비소 및 중금속과 미립자의 동시 제거를 위한 응집 침전조에서 응집제에 의해서 미립자와 함께 제거하는 응집, 침전 및 분리공정을 배치하였다.

  • PDF

역미셀을 이용한 참치내장으로부터 단백질 추출

  • 윤성옥;전병수
    • Proceedings of the Korean Society of Fisheries Technology Conference
    • /
    • 2000.05a
    • /
    • pp.98-99
    • /
    • 2000
  • 최근 유전자 공학의 급속한 발전으로 인하여 유전자 조작을 통한 생화합물의 대량 생산, 세포배양에 의한 생화학제품(아미노산, 단백질, 핵산)의 생산이 크게 진보하고 있으나, 이에 비해 생화학제품을 효율적으로 분리 및 정제하는 기술은 상대적으로 발전하지 못했다. 생화합물의 분리 방법은 전통적으로 유기용매에 의한 침전법, 염석법, 탈염법, 크로마토그래피법, 전기영동법, 흡착제를 이용한 흡착법등을 사용하는데 이 방법들은 소규모 및 회분식 공정으로 이루어져 대형화에 따른 분리 공정의 효율이 감소하는 어려움이 있었다. 따라서 연속공정으로서 대형화가 쉽고, 효율적인 생물분리공정의 개발이 요구되고 있다. (중략)

  • PDF

Carbon Dioxide Capture and Carbonate Synthesis via Carbonation of KOH-Dissolved Alcohol Solution (KOH-알코올 용액의 탄산화를 통한 이산화탄소 포집 및 탄산염 합성)

  • Kim, Eung-Jun;Han, Sang-Jun;Wee, Jung-Ho
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.37 no.11
    • /
    • pp.597-606
    • /
    • 2015
  • This work investigates the carbonation of KOH-dissolved methanol and ethanol solution systems carried out for $CO_2$ fixation. Potassium methyl carbonate (PMC) and potassium ethyl carbonate (PEC) were synthesized during the reaction in each solution as the solid powder, and they were characterized in detail. The amount of $CO_2$ chemically absorbed to produce the PMC and PEC precipitates were calculated to be 97.90% and 99.58% of their theoretical values, respectively. In addition, a substantial amount of $CO_2$ was physically absorbed in the solution during the carbonation. PMC precipitates were consisted of the pure PMC and $KHCO_3$ with the weight ratio of 5:5, respectively. PEC precipitates were also mixture of the pure PEC and $KHCO_3$ with the weight ratio of 8:2, respectively. When these two precipitates were dissolved in excess water, methanol and ethanol were regenerated remaining solid $KHCO_3$ in the solutions. Therefore, the process has the potential to be one of the efficient options of CCS and CCU technologies.

Application of Principle in Metal-Ligand Complexation to Remove Heavy Metals;Time Effects (금속(金屬)-Ligand 착염형성(錯鹽形成)에 의한 중금속(重金屬) 제거(除去) 방법(方法)에 관한 연구(硏究);시간(時間)의 영향(影響))

  • Yang, Jae-E;Shin, Yong-Keon;Kim, Jeong-Je
    • Korean Journal of Environmental Agriculture
    • /
    • v.12 no.1
    • /
    • pp.51-57
    • /
    • 1993
  • Objective of this research was to assess the influence of reaction time on the heavy metal-organic ligand complexation by employing kinetic models. Aqueous solutions of humic (HA) or fulvic acid (FA) were reacted with metal solutions with 1:1 ratio to form complexes. Efficiency of organic ligand on metal removal was determined by separating the precipitates from solution using $0.45\;{\mu}m$ filter paper. Complexation between Cu or Pb and HA or FA followed the first- or multiple first order kinetics, largely depending on metal concentration and kind of organic ligand. Amounts of precipitates were increased proportionally with reaction time but reached to quasiequilibrium where rate of precipitate formation was not varied with time. Copper-ligand complexation was, irrespective of ligand, fitted to the single first order kinetics at Cu concentrations lower than $300{\mu}M$, but this was fitted to the multiple first order kinetics at Cu concentrations higher than $300{\mu}M$. As increasing Cu concentrations, the precipitates formed more readily, judging from the increased rate constants (${\kappa}$). In the multiple first order kinetics, ${\kappa}$ was decreased as reaction steps proceeded. Most of Cu-ligand precipitates were formed within 15 min. FA precipitated Cu more rapidly than HA did. ${\kappa}$ for Pb-HA complexation was decreased but that for Pb-FA reaction was increased, as increasing Pb concentration. Most of Pb-organic ligand complexation occurred within 30 min. Afterwards, ${\kappa}$ values were relatively small and not affected much by time. Pb was precipitated by humic acid more readily than Cu when metal concnetrations were $200{\sim}300{\mu}M$. However, when metal concentrations were in the ranges of $400{\sim}500{\mu}M$, a reversed tendency was observed.

  • PDF

An Evaluation of Solid Removal Efficiency in Coagulation System for Treating Combined Sewer Overflows by Return Sludge (CSOs처리를 위한 응집침전시스템에서 슬러지 반송에 의한 고형물 처리효율평가)

  • Ha, Sung-Ryong;Lee, Seung-Chul
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.3
    • /
    • pp.171-178
    • /
    • 2013
  • In this study, the sludge that occurs in the initial operation of coagulation system developed for the treatment of CSOs were returned to the flocculation reactor. The purposes of this study were to analyze the Characteristics of flocs that are generated through the recycling sludge and settling characteristics of sludge, and to evaluate the possibility that high concentrations of particulate matter in the initial inflow of CSOs could be used as an weighted coagulant additive. As a result, the concentration of treated CSOs pollutants at the beginning of the CSOs influent with a large amount of particulate matter over 20 ${\mu}m$ was low, after gradually increasing the concentrations of them. The flocs generated from the sludge return were similar in size compared to flocs generated through injection of micro sands, and settling velocity in case of return sludge injection was decreased from 55.1 cm/min to 21.5 cm/min. SVI value of the sludge accumulated at the bottom of the sedimentation tank was 72, and settled sludge volume decreased rapidly due to the consolidation of sludge to the time it takes to 10 minutes. these mean that sludge used for recycling has good settling characteristic. A condition of returned sludge which is 0.1% return of 0.3% extraction was formed in the balance of settlement and extraction. In this case, This condition was to be adequate to maintain the proper concentration such as 100~200 mg/L of TS and 50~100 mg/L of VS in the flocculation reactor. The usage of the return sludge containing particulate matters of CSOs as an weighted coagulant additive was able to secure a stable treated water quality despite the change of influent water quality dynamically. Furthermore, it can be expected to reduce the alum dosage along with the sludge production.

Evaluation of Biological Aerated Filter Position on Water Treatment Processes for Water Quality Improvement (상수원수 전처리 시 효율향상을 위한 생물여과 반응기 위치선정)

  • Choi, Hyung-Joo;Choi, Dong-Ho;Bae, Woo-Keun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.6
    • /
    • pp.677-686
    • /
    • 2006
  • This study was the effectiveness of two downflow BAF(Biological Aerated Filter) systems at conventional water treatment system. A BAF reactor placed in front of coagulation and sedimentation tanks(Mode A) and after coagulation and sedimentation tanks(Mode B) that were compared in terms of removal of suspended particles, organic matters, and ammonia nitrogen. The suspended particles removal efficiency was over 80% for both Mode A and B, although Mode A gave slightly better results. $BOD_5$ removal and nitrification efficiencies were more than 90% for both reactor. The organic matter and ammonia removals were also superior in the Mode A. The biofilm thickness and biomass increased as increment of EBCT and the upper part of reactor more about 30% than lower part. The specific oxygen uptake rate(SOUR) was higher the upper part of reactor and Mode A than the lower part of reactor and Mode B. A cost analysis showed that the Mode A system was more cost effectiveness. It could save the coagulant dose by about 67% and the chlorine demand by about 95%. The ideal place to put the BAF reactor was in front of the coagulation/sedimentation process.

Application of Principle in Metal-Ligand Complexation to Remove Heavy Metals : Kind and Concentration Effects of Organic Ligands (금속-Ligand 착염형성에 의한 중금속(重金屬) 제거(除去) 방법(方法)에 관한 연구(硏究);유기 Ligand의 종류와 농도(濃度) 영향(影響))

  • Yang, Jae-E;Shin, Yong-Keon;Kim, Jeong-Je;Park, Jeong
    • Korean Journal of Environmental Agriculture
    • /
    • v.11 no.3
    • /
    • pp.243-252
    • /
    • 1992
  • This research was conducted to investigate the influence of kind and concentration of organic ligands such as humic (HA) or fulvic acid (FA) on the removal of Cu or Pb from the aqueous solution employing the principles in metal-ligand complexation. Increasing HA concentration enhanced the efficiency of Cu or Pb removal, but there existed upper critical concentrations capable of forming maximum HA-metal complex. which ranged 53-289 and 42-315mg/L for Cu and Pb, respectively. At these concentrations. efficiency of removal was 70 to 95 % for Pb, but 13 to 65 % for Cu. Amounts of Cu and Pb which complexed with 100mg HA were estimated to be 7.5 and 34.1mg, respectively. FA-metal complex forming reactions were fitted significantly to the empirical models of Freundlich for Cu and Langmuir for Pb. Fulvic acid precipitated nearly 100% of Pb in solution, but formed precipitates with Cu in only 13 to 29%. Comparing organic ligands. HA had a higher removal efficiency for Cu but FA had such for Pb. Metalligand complex formation was differed from kinds and concentrations of corresponding ligands and metals. Results demonstrated that this principle has a strong potential to be employed for treating heavy metals in aqueous solution.

  • PDF

Efficiency of Apatite and Limestone in Removing Arsenic from Acid Rock Drainage at the Goro Abandoned Mine (인회석 및 석회석을 이용한 고로폐광산 ARD 내의 비소 저감효율 연구)

  • Park, Myung-Ho;Lee, Young-Woo;Hur, Yon-Kang;Park, Hae-Cheol;Sa, Sung-Oh;Choi, Jung-Chan
    • The Journal of Engineering Geology
    • /
    • v.21 no.3
    • /
    • pp.231-237
    • /
    • 2011
  • An active apatite drainage system has been developed at the Goro abandoned mine, comprising a grit cell, a reaction cell, and a precipitation pond. Leachate from an abandoned adit and tailing ponds is collected in a pipeline and is transported to the apatite drainage system under the influence of the hydraulic gradient. The results of a laboratory experiment performed in 2004 indicate that the reaction cell requires 38.8 ton/year of apatite and that precipitate will have to be removed from the precipitation pond every 3 months. The purpose of this study is to evaluate a laboratory test on the efficiency of limestone and apatite in removing arsenic from ARD (acid rock drainage), and to evaluate the suitability of materials for use as a precipitant for the leachate treatment disposal system. The laboratory tests show that the arsenic removal ratios of limestone and apatite are 67.4%-98.3%, and the arsenic removal ratio of apatite is inversely proportional to its grain size. The arsenic compounds are assumed to be Johnbaumnite and Ca-arsenic hydrate. Therefore, apatite and phosphorous limestone can be used as a precipitant for the removal of arsenic, although it is difficult to remove arsenic from ARD when it occurs in low concentrations.

Evaluation of Pilot scale Coagulation system Design for CSOs treatment (CSOs 처리를 위한 실증규모 응집침전시스템의 설계평가)

  • Lee, Seung-Chul;Ha, Sung-Ryong
    • Journal of Wetlands Research
    • /
    • v.15 no.1
    • /
    • pp.1-8
    • /
    • 2013
  • A pilot scale coagulation system, which has a function of physicochemical treatment, was developed to treat Combined sewer overflows(CSOs). This coagulation system requires evaluation of optimum design factors whether it has reflected those of lab scale system, moreover, the pilot scale system can be evaluated differently according to the characteristics of influent CSOs even though it has reflected lab scale's design factors. We conducted an experiment using lab scale system that could treat $1m^3$ of CSOs in a day, and also pilot-scale system with $100m^3/day$ CSOs flowed into the Cheongju sewage treatment plant. Therefore the aim of this study is to evaluate a hydraulic similarity between the design factors of pilot scale and those of lab scale coagulation system, and to evaluate feasibility of the coagulation system for the CSOs treatment with optimum operation conditions. From the result of pilot-test, we drew the optimum operation factors of in line mixer and flocculator having similarities with those of lab scale system as well as the optimum coagulant dose. Finally we confirmed that the coagulation system has feasibility to treat the CSOs with high removal efficiency.

A plan by practically using Low-Energy Compected-Flow mixing installation to improve sendimental and removal efficiency (저에너지형 CF혼화장치를 활용한 침전제거효율 개선 방안)

  • Choi, Gye-Woon;Lee, Joo-Kyung;Ahn, Kyung-Hun;Han, Man-Shin
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2008.05a
    • /
    • pp.842-846
    • /
    • 2008
  • 원수의 탁질 중에서 입경이 $10^{-1}$mm이상인 것은 보통침전으로 제거가 가능하지만, 입경이��$10^{-3}mm$이하가 되면 일반적으로 콜로이드입자라고 총칭하며 그대로의 상태로서는 거의 침강되지 않을 뿐만 아니라 급속여과기구에서도 포착되지 않는다. 따라서 급속여과 방식에서는 이와 같은 탁질을 효과적으로 제거하기 위한 전처리로서 응집조작으로 인한 콜로이드상의 탁질을 플록화하여 약품침전이나 급속여과에서 포착되도록 탁질의 성상을 변화시키는 조작이 반드시 필요하다. 또한 양호한 플록을 효과적으로 형성시키는 약품혼화와 플록형성 등을 강구해야 한다. 이에 본 연구에서는 현재 국내에서 운영하고 있는 정수처리시스템의 일부인 혼화지내에 혼화지점의 단면적을 축소시켜 약품혼화효과를 극대화하고 혼화기의 소요동력을 감소시켜 혼화효과를 개선하며 혼화지내 혼화기 운용의 비용 절감 효과를 증가시키기 위한 저에너지형 CF혼화장치를 개발하는데 연구 목적이 있다. 연구결과 CF혼화장치의 설치시 약품 투입 위치에 따라 $2{\sim}6%$정도의 탁도제거율의 상승과 슬러지 높이의 차이를 보이는 것으로 나타났으며 이 실험 결과 약품투입장소에서 혼화지의 Compact화로 인해 급속 혼화를 이룰 경우 더 많은 플록화로 인해 탁도 제거율이 높아지는 것을 알 수 있다.

  • PDF