• Title/Summary/Keyword: 침몰선박 위해도 평가

Search Result 14, Processing Time 0.021 seconds

A Study on the Development of Risk Assessment for Sunken Vessels Using Remaining-Fuel Estimations Model (선박 연료유 잔존량 추정모델을 이용한 침몰선박 위해도 평가)

  • Chang, Woo-Jin;Lee, Seung-Hyun;Yeom, Hong-Jun;Lee, In-Cheol
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.22 no.1
    • /
    • pp.90-97
    • /
    • 2016
  • Sunken vessels accidents have harmful impacts on the marine environment because of oils and chemicals in the vessels. The government has managed them and developed risk assessment which can evaluate potential risk quantitatively since 1999. But the grades of present risk assessment has changed greatly depending on quantity of remaining fuel oils, and the list of remaining fuel oils omitted in status report of sunken vessels. Therefore, the aim of the study is to estimate and develop model for quantity of remaining fuel oils and verify the remaining fuel estimation comparison with active vessels. To accomplish the purpose of the study, apply this verified estimation model to current risk assessment and recommend guideline for an accurate sunken vessels risk assessment.

De Lege Ferenda for Improvement of the Management System for Sunken Vessels (침몰선박 관리체계의 개선을 위한 입법론적 연구)

  • Jeon, Yeong-Woo;Jeon, Hae-Dong;Hong, Sung-Hwa
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.23 no.5
    • /
    • pp.462-472
    • /
    • 2017
  • Sunken vessels on major fairways can cause many problems in terms of maritime safety and the marine environment. In order to prevent secondary marine pollution accidents caused by sunken vessels, information on sunken vessels has been collected, a risk assessment has been conducted, and the relevant vessels are being managed according to the results of each assessment. However, there is still a demand for improvements. The most important of the improvement plans is a paradigm shift. In other words, the management of sunken vessels needs to be transformed according to a new paradigm to manage all sunken vessels within three years from the time of sinking. Legislative improvements are also needed for the reporting system for sunken vessels, risk assessment tools, the implementation of risk mitigation measures, and criteria for the implementation cost of risk mitigation measures. In addition, close coordination between marine pollution response and sunken vessel management efforts is needed. As the division of duties between the Korea Coast Guard and the Ministry of Oceans and Fisheries is vague, collaboration between the two ministries is required. Close collaboration is also needed between the departments of navigation safety management and sunken vessel management. Therefore, it is necessary to more clearly establish the relationship between the two systems and create a synergy effect between the two administrative operations using the results of the risk assessment in the Marine Environment Management Act to determine the navigational risk posed by obstacles with regard to the Maritime Safety Act.

Development of the Risk Assessment Systems for Management of Sunken Ships (침몰선박의 관리를 위한 위해도 평가시스템 개발)

  • Choi, H.J.;Lew, J.M.;Kim, H.;Lee, S.H.;Kang, C.G.
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.8 no.4
    • /
    • pp.193-202
    • /
    • 2005
  • Marine risk assessment considers events such as collision/grounding, sinking/capsize, fire/explosion and flooding, developing relationships between their causes and effects. In addition, risk assessment of previously sunken ships are also necessary since they continuously have possibility for further oil spill or can cause other marine accidents. The objective of this paper is to develop the risk assessment systems for sunken ships to prevent oil spill and further marine causalities in order to preserve safe and clean oceans around Korea peninsula. The risk assessment systems for sunken ships comprise of database management sub-system for sunken ships, qualitative risk assessment sub-system, quantitative risk assessment sub-system, and cost-benefit analysis subsystem.

  • PDF

A Study on the Improvement of Risk Assessment Items and Index for Sunken Ship (침몰선박 위해도 평가항목 및 평가지수 개선에 관한 연구)

  • Lee, Seung-Hyun;Choi, Hyuek-Jin;Suh, Jae-Joon
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.21 no.6
    • /
    • pp.704-711
    • /
    • 2015
  • In this study, we have conducted a survey of AHP technique through the ocean experts to derive new items and revise assessment items and indices for risk of sunken ships based on the survey results. As a result of the survey, two new items such as accident cause and tidal current are derived. And it shows that existing items such as toxic liquid substance, remaining oil and explosive gas which were evaluated as one group are desirable to be evaluated respectively. Accordingly, we analyze the indices of the new eleven assessment items adjusted from the existing seven assessment items. As a result, the indices are ordered by toxic liquid substance, possibility of leaking, explosive gas, carrying capacity of fuel oil, sensitivity of sea environment, marine traffic environment, cause of accident, tidal current, keel clearance, ship type, and ship size. Especially, as compared with the indices of existing assessment items, the indices of sensitivity of sea environment and possibility of leaking are higher and the index of keel clearance is lower.

Structural Safety Assessment of a Sunken Ship Considering Hull Corrosion and Damaged Members - Focus on the Sunken Ship 'No. 7 HaeSung' - (선체 부식 및 손상 부재를 고려한 침몰선박의 구조 안전성 평가에 관한 연구 - 제7 해성호를 중심으로 -)

  • Lee, Seung Hyun;Kim, Won Don;Suh, Jae-Joon
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.19 no.4
    • /
    • pp.332-340
    • /
    • 2016
  • Sunken ships cause damage to the environment due to the dispersal of fuel oil and harmful cargo goods in the hull. Since the sunken ship is mostly flooded by the seabed, it tends to be in a relatively stable condition. However, the heavy body, together with the load of remaining goods in the cargo hold, the constant contact with the seabed, and ocean currents and tidal waves, can affect dispersal of residual fuel oils out of the sunken ship. Corrosion of the sunken ship starts upon sinking, decreasing the thickness of the hull structure and sub-materials. Therefore, it is necessary to assess the structural stability against the potential breakdown of the sunken ship. Whilst evaluating the danger of the sunken ship, this result should be reflected in 'the possible discharge'. This study was undertaken to suggest a procedure for a step by step evaluation to assess the structural stability a sunken ship. The structural stability assessment to estimate the collapsibility of the hull was structure targeted at the sunken ship 'No. 7 HaeSung', which was classified as the prime example for the intensive management of sunken ships. This study was undertaken to suggest a procedure for a step by step evaluation to assess the structural stability a sunken ship and to propose a method to conduct a structural safety assessment that estimates the collapsibility of the hull by targeting the sunken ship 'No. 7 HaeSung',which was classified as the prime example for the intensive management of sunken ships. The collapsibility of the hull structure was estimated Based on the damage size of the hull structure, and the corrosion rate of the hull structure and sub-materials due to the seawater after sinking. It was confirmed that there was a low possibility of the total destruction of the hull structure at the current time. However, there is a high possibility in the potential failure of the hull structure due to increased rate of corrosion thereafter. Therefore, we believe continuous study on influence of corrosion and marine environment change to sunken ship's structural safety is necessary.

Forensic Engineering Study on Structure Stability Evaluation of Deep Cement Mixing Vessel using ADINA Software (ADINA 를 이용한 DCM 선박의 구조안정성 평가에 관한 연구)

  • Kim, Eui Soo;Kim, Jong Hyuk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.11
    • /
    • pp.1283-1290
    • /
    • 2014
  • Recently, a wide variety of simulation techniques such as structure analysis and structure-fluid interaction analysis are being employed in the field of forensic engineering for resolving the problem of legal liability for accidents and disasters. In this study, we performed a forensic engineering investigation of a sinking accident of a DCM (deep cement mixing) vessel. The accident vessel was built as a dedicated SCP (sand compaction pile) vessel at the time of vessel building, and the DCM vessel was structurally modified, e.g., by increasing the leader height and constructing for leader expansion, without a stability review. To determine the effects of expansion and modification of structures in this sinking accident, structural stability evaluation was performed using commercial software for structural analysis, ADINA software. Through an analysis and comparison of simulation results obtained using ADINA software with the results of the structural modification and expansion, we could determine the exact cause of the sinking accident of the DCM vessel.

Ultimate Strength Based Reliability of Corroded Ship Hulls (부식을 고려한 선각거더의 최종강도 신뢰성)

  • Paik, J.K.;Yang, S.H.;Kim, S.K.
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.33 no.2
    • /
    • pp.96-110
    • /
    • 1996
  • Aging ships can suffer structural damage due to corrosion, fatigue crack etc., and possibility of catastrophic failure of seriously damaged ships is very high. To reduce the risk of loss of ships due to hull collapse, it is essential to evaluate ultimate hull strength of aging ships taking into account various uncertainties associated with structural damages. In this paper, ultimate strength-based reliability analysis of ship structures considering wear of structural members due to corrosion is described. A corrosion rate estimate model for structural members is introduced. An ultimate limit state function of a ship hull is formulated taking into account corrosion effects. The model is applied to an existing oil tanker, and reliability index associated with hull collapse is calculated by using the second-order reliability method (SORM). Discussions on structure safety of corroded ships are made.

  • PDF

A Special Purpose FE Program for the Collapse Strength Analysis of Bulk Carrier Corrugated Bulkheads Subject to Accidental Flooding (침수시 산적화물선 파형 횡격벽 붕괴강도해석 전용 유한요소 프로그램 개발)

  • Jeom-Kee Paik;Sung-Geun Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.35 no.2
    • /
    • pp.63-73
    • /
    • 1998
  • Due to the collapse of corrugated bulkheads subject to accidental flooding which is thought to be a primary cause of bulk carrier losses International Maritime Organization(IMO), the International Association of Classification Societies(IACS) and the leading classification societies are taking a growing concern for the structural safety of corrugated bulkheads of bulk carriers. To prevent progressive collapse of corrugated bulkhead in flooded condition particularly of forward cargo ho1d they try to make rules which require reinforcement of corrugated bulkhead structure. However, we are still confronted with the urgent problem of more accurate and efficient ultimate strength assessment for corrugated bulkheads. This paper develops a special purpose nonlinear FE program for analyzing progressive collapse behavior of corrugated bulkheads subject to lateral pressure loads. As verification examples, the program is applied to collapse strength analysis of steel corrugated bulkhead test model.

  • PDF

Characteristics on the chord length and cutting ratio of rear side blade for the offshore vertical axis wind turbine (날개 길이 및 후면부 절개 비율에 따른 해상용 수직축 풍력발전기 특성 평가)

  • Kim, Namhun;Kim, Kyenogsoo;Yoon, Yangil;Oh, Jinseok
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.64.2-64.2
    • /
    • 2011
  • 해상용(offshore) 부이(bouy)는 선박의 항로를 지시하거나 암초, 침몰선 등 항해상의 위험물을 알리기 위해 사용 되며, 야간을 위해 등화장치를 설치한 것을 등부표라 한다. 등부표는 야간 점등을 위해 자체 전력 생산시스템을 갖추고 있으나, 기존의 태양광을 이용한 전력 시스템은 해상 환경에 따른 제약이 많아 안정적인 운영이 어려우므로 풍력 발전기(wind turbine)를 이용한 하이브리드 전력 생산시스템으로의 전환이 필요한 실정이다. 선행 연구는 수직축(vertical axis) 양력(lift) 및 항력(drag) 조합형 해상용 풍력발전기 개발에 대하여 수행하였으나, 본 논문에서는 풍력발전기의 효율 증대를 위해 날개 길이 및 후면부 절개 비율에 따른 수직축 풍력발전기 특성에 대하여 연구하였다. 풍력발전기의 설치조건은 선행연구와 동일하게 등명구 교체 작업을 원활하게 하기 위하여 설치 공간을 $1m{\times}1m$로 제한하였으며, 등부표의 구조를 고려하여 최상단에 지지 프레임을 별도로 구성 하였다. 풍력발전기의 블레이드는 0.6mm의 알루미늄 박판을 절곡하여 NACA 4418의 외형을 가지도록 제작하였고, 블레이드 설계 시 에어포일의 후면부를 절개하여 양력과 항력을 효과적으로 이용하며 저속과 고속에서 높은 효율을 가지도록 설계하였다. 또한 블레이드 날개 길이와 후면부 절개 비율에 따른 풍력발전기 특성을 실험을 통해 비교하여 기준 해상 풍속에서 블레이드 설계 최적화를 수행하였으며 비교 모델 대비 약32% 발전량이 증가한 설계변수 조합을 구하였다.

  • PDF