• Title/Summary/Keyword: 친환경 안경테

Search Result 3, Processing Time 0.017 seconds

Study on the Eco-friend Frame Sheet with Improved Glasses Temple's Insertion-processibility by Blending Plasticizer of High Specific Heat (친환경 안경테 판재의 심입 가공성 향상을 위한 고비열 가소제 혼입에 관한 연구)

  • Seo, Young Min;Lee, Hae Sung;Lee, Sung Jun;Jung, Sang Won;Kim, Hyun-Chul;Kim, Eun Joo;Go, Young Jun;Choi, Jin Hyun;Lee, Se Guen
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.18 no.1
    • /
    • pp.11-17
    • /
    • 2013
  • Purpose: To improve glasses temple's insert processibility of CA/PEG blend, triacetin with higher specific heat values in the processing temperature range is used as second plasticizer. Methods: The total amount of plasticizer is fixed at 30 wt% by CA. To determine optimal CA/PEG/triacetin blend for glasses frame, blends with different composition ratio were examined by various analysis: thermal properties, mechanical properties, glossiness. Results: Specific heat of the CA/PEG blend increased as the content of triacetin. In CA/PEG/triacetin blends, as triacetin concentration is increased, glass transition temperature is decreased and heat conservation rate of composites is increased. Furthermore, CA/PEG/triacetin blend exhibited higher mechanical properties and similar gloss characterization with CA/PEG blend. Conclusions: It is possible to improve the processibility inserting metal support to CA temple through varying the weight ratio of PEG/triacetin. The extruded sheets of CA/PEG/triacetin blend had better glossiness and mechanical properties than those of CA/PEG blend.

Influence of a Glasses Frame Processing on the Properties of Eco-friendly Cellulose Acetate Sheet (친환경 셀룰로오스 아세테이트 판재의 안경테 가공 공정별 물성 특성 연구)

  • Lee, Hae Sung;Lee, Sung Jun;Jung, Sang Won;Kim, Hyun-Chul;Go, Young Jun;Park, Dae Jin;Lee, Se Guen
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.20 no.1
    • /
    • pp.1-7
    • /
    • 2015
  • Purpose: For optimizing properties of final glasses frame, the aim of this study is to examine the correlation of processing conditions and properties of cellulose acetate (CA) sheets through the investigation of properties of CA sheets prepared under processing steps. Methods: The properties of CA sheets were investigated in terms of different glasses frame processing conditions, bending process, barrel process, and ultrasonic cleaning process. CA sheets prepared through the sequential processing were examined by various analysis: gloss, mechanical properties, thermal properties. Results: After barrel process, hardness and tensile strength of CA sheet were increased. However, bending strength and impact strength were decreased. It is suggested the CA sheet had became rather stiff state (brittle). Also, in degradation temperature region of plasticizer, about 3% of reduction in plasticizer weight was confirmed upon TGA analysis. Conclusions: Glasses frame process, especially in the barrel process have a profound influence on the properties of CA sheet owing to reduction of total amount of plasticizer.

Characterization of laser welding for biodegradable acetate polymer for glass rims (안경테제조를 위한 친환경 아세테이트 수지의 레이저 접합특성에 관한 연구)

  • Yoon, Sung Chul;Park, Sung Gyu;Park, Joong Un;Choi, Hae Woon
    • Laser Solutions
    • /
    • v.17 no.4
    • /
    • pp.14-19
    • /
    • 2014
  • Laser beam was applied on the boundary of the polyurethane and biodegradable polyacetate polymers. The distributed laser passed through the polyurethane layer and heated the polyacetate layer, then the soften acetate was squeezed thorough the 1mm square slots of polyurethane for the mechanical joining. The surface roughness ranging between $0.28{\mu}m$ and $3.06{\mu}m$ had almost no effect on joining strength, but the optical properties of HD (High Definition) and UHD (Ultra High Definition) mode affected laser beam transmittance. The optimum laser power was found to be between 8watt and 10watt with 500mm/min of scanning speed. The joining boundary was characterized by optical and SEM analysis. Based on the experiment and characterization results, the laser energy was effective for the polymer joining and efficiency of joining.

  • PDF