• Title/Summary/Keyword: 친수기

Search Result 270, Processing Time 0.025 seconds

Continuous Hydrogen Gas production by Immobilized Anaerobic Microorganisms (고정화 혐기성 미생물에 의한 연속적인 수소 생산)

  • 김정옥;김용환;류정용;송봉근;김인호
    • KSBB Journal
    • /
    • v.18 no.2
    • /
    • pp.111-116
    • /
    • 2003
  • Hydrogen producing acidogenic microorganisms were self-immobilized using organic-inorganic hybrid polymer within 5 minutes. During the continuous tratment of synthetic wastewater at a hydraulic retention time of 20 hours, at 37$^{\circ}C$, pH 5.0, the self-immobillized granules were maintained in a stirred tank reactor. The black colored granules gradually became milky. Image analysis showed that the mean diameter of the milky colored granules ranged from 1.5 to 20. mm. The maximum bio-gas procuction rate was 380 ml/L/hy and the concentration of H$_2$was around 50%, while no methane was detected. Granular ECP was extracted and its content was measured to elucidate the role of the organic-inorganic hybrid polymer. Further increases of granule concentration are expected to increase the hydrogen production rate.

Study on the Development of Hybrid NMP Recovery System for Recovering the Used NMP in Lithium Ion Battery Cathode Manufacturing Process (리튬이온전지 양극제조 공정에서 사용된 NMP를 회수하기 위한 하이브리드형 NMP 회수시스템 개발에 관한 연구)

  • Hwang, Soon Ho;Nam, Seung Beak;Kim, Dong-Kwon;Kim, Yang Jun;Kang, Sung Eun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.5
    • /
    • pp.289-296
    • /
    • 2016
  • The availability of NMP, a solvent used in the manufacturing process of cathode material for lithium ion battery, depends on importation, and the price remains high because of the monopoly of BASF and ISP. For these reasons, most Lithium ion battery manufacturers reuse NMP after recovering it from the exhaust air in the drying process. In Korea, absorption method is mainly used for recovering NMP from the absorption tower using the hydrophilicity of NMP. However, this system has a few disadvantages, such as low purity (80%) of the recovered NMP and 100% emission due to high water content of the treated gas. In this study, we develop a hybrid NMP recovery system by combining cooling condensation method with concentration method, by which it is possible to obtain an NMP recovery rate of 99.6%, and a high purity (96.1%) of the recovered NMP.

Enhancement of Electrochemical and Mechanical Properties of 3D Graphene Nanostructures by Dopamine-coating (도파민 코팅을 이용한 3차원 그래핀 나노 구조체의 전기화학적/기계적 특성 향상 연구)

  • Lee, Guk Hwan;Luan, Van Hoang;Han, Jong Hun;Kang, Hyun Wook;Lee, Wonoh
    • Composites Research
    • /
    • v.32 no.6
    • /
    • pp.388-394
    • /
    • 2019
  • Inherited the excellent electrical and mechanical properties based on the low dimensional structure of graphene, three-dimensional graphene nanostructures have gathered great attention as electrochemical energy storage electrodes owing to their high porosity and large specific surface area. Also, having the catecholamine structure, dopamine has been regarded as a multifunctional material to possess high affinity to various organic/inorganic materials and to modify a hydrophobic surface to a hydrophilic one. In this work, through coating dopamine on the three-dimensional graphene nanostructure, we tried to increase the specific capacitance by enhancing the wettability with electrolyte and to improve the mechanical compressive property by strengthening the nano-architecture. As a result, the dopamine-coated nanostructure exhibited significant improvement on the specific capacitance (51.5% increase) and compressive stress (59.6% increase).

Addtion Reaction of Phenyl Glycidyl Ether with Carbon Dioxide Using Phase Transfer Catalysts (상이동 촉매에 의한 Phenyl Glycidyl Ether와 이산화탄소의 부가반응)

  • Park, Dae-Won;Moon, Jeong-Yeol;Yang, Jeong-Gyu;Park, Sung-Hoon;Lee, Jin-Kook
    • Applied Chemistry for Engineering
    • /
    • v.7 no.1
    • /
    • pp.26-33
    • /
    • 1996
  • This study is related to the investigation of the characteristics of phase transfer catalysts on the addition reaction of carbon dioxide and phenyl glycidyl ether(PGE). Quaternary ammonium salts showed a good conversion of PGE at l atm of $CO_2$. Among the quaternary ammonium salts tested, the ones with higher alkyl chain length and with more hydrophilic counter anion showed higher catalytic activity. Polyethylene glycol and crown ether were also effective catalysts when they are used with NaI. High pressure of $CO_2$increased the conversion of PGE by increasing solubility of $CO_2$in NMP. A mechanism of the reaction involving the role of phase transfer catalyst was also proposed.

  • PDF

Experimental Study on Liquid Desiccant Distribution Characteristics at a Dehumidifier with Extended Surface (확장표면을 적용한 액체식 제습기에서 제습액 분배 특성에 관한 실험적 연구)

  • Lee, Min-Su;Chang, Young-Soo;Lee, Dae-Young
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.645-649
    • /
    • 2009
  • Liquid desiccant cooling technology can supply cooling by using waste heat and solar heat which are hard to use effectively. For compact and efficient design of a dehumidifier, it is important to sustain sufficient heat and mass transfer surface area for water vapor diffusion from air to liquid desiccant on heat exchanger. In this study, the plate type heat exchanger is adopted which has extended surface, and hydrophilic coating and porous layer coating are adopted to enhance surface wettedness. PP(polypropylene) plate is coated by porous layer and PET(polyethylene terephthalate) non-woven fabric is coated by hydrophilic polymer. These coated surfaces have porous structure, so that falling liquid film spreads widely on the coated surface foaming thin liquid film by capillary force. The temperature of liquid desiccant increases during dehumidification process by latent heat absorption, which leads to loss of dehumidification capacity. Liquid desiccant is cooled by cooling water flowing in plate heat exchanger. On the plate side, the liquid desiccant can be cooled by internal cooling. However the liquid desiccant on extended surface should be moved and cooled at heat exchanger surface. Optimal mixing and distribution of liquid desiccant between extended surface and plate heat exchanger surface is essential design parameter. The experiment has been conducted to verify effective surface treatment and distribution characteristics by measuring wall side flow rate and visualization test. It is observed that hydrophilic and porous layer coating have excellent wettedness, and the distribution can be regulated by adopting holes on extended surface.

  • PDF

Structure and Characteristic of Chitosan/Bombyx mori Silk Fibroin Blend Filems (키토산/Bombyx mori 견 피브로인 블렌드 필름의 구조와 특성)

  • Kim, Dong-Keon;Kim, Hong-Sung
    • Polymer(Korea)
    • /
    • v.29 no.4
    • /
    • pp.408-412
    • /
    • 2005
  • Structure and characteristic of the films blended chitosan matrix with silk fibroin, extracted from Bombyx mori, were studied by X-ray diffraction, differential scanning calorimetry, FT-IR spectra analysis, SEM photographs, contact angle measurement and water absorbency in order to use as biomaterials. The blend films of $0\~30 wt\%$ fibroin content were prepared in acetic solution with $Li^+$ ion. It was found that the crystallinity of chitosan/fibroin blend films was decreased by the presence of intermolecular interactions such as hydrogen bonding between animo groups of chitosan and carbonyl groups of fibroin. As the proportion of fibroin in the blend increased, anhydrous crystalline phase of chitosan disappeared, and hydrated crystalline phase decreased, and $\beta$-structure crystalline phase of fibroin was formed. Therefore the blend films were crystallized into two different crystalline region of chitosan and fibroin. Surface hydrophilicity and water absorbency increased with blending fibroin. Above 20 $wt\%$ fibroin content, hydrogel film was formed. The surface and section of the film showed uniform microstructure on SEM photographs.

Aggregation of Partially Quarternized Poly(4-vinylpyridine) with Anionic Surfactant Sodium Dodecvl Sulfate (부분적으로 4차아민화된 폴리(4-비닐피리딘)과 음이온 계면활성제인 도데실 황산 소듐과의 응집체 형성)

  • 김용철;박일현;심후식;최이준
    • Polymer(Korea)
    • /
    • v.28 no.2
    • /
    • pp.154-161
    • /
    • 2004
  • Modified poly(4-vinylpyridine) was obtained by partial quarternization of nitrogen atoms in pyridine rings of poly(4-vinylpyridine) with methyl group. By means of laser light scattering and fluorescence, it was found that this modified polymer chains were aggregated in the aqueous solution and its structure was core-shell type. The hydrophobic parts of the chains were densely condensed in core part and the hydrophilic part of quarternized amino with positive charge formed the shell part. In the mixed system of modified poly(4-vinylpyridine) and anionic surfactant, sodium dodecyl sulfate, it was observed that a critical aggregation concentration existed and that this critical concentration was suddenly decreased above 0.1 M NaCl. The size change of aggregates was also investigated by dynamic light scattering while sodium dodecyl sulfate was added into polymer solution upto the critical aggregation concentration.

Synthesis and Characteristics of Photo-crosslinkable Hydrogel for Microbial Immobilization (미생물 고정화를 위한 광경화성 하이드로겔의 합성과 특성)

  • Kim, Cho Woong;Lee, Jung Bock;Kim, Du Hyun;Hwang, Jung Min;Cho, Chong Su;Choi, Young Hoon;Chung, Dae-Won
    • Applied Chemistry for Engineering
    • /
    • v.10 no.6
    • /
    • pp.852-856
    • /
    • 1999
  • The objective of this study was to prepare hydrogel beads which were useful microbial immobilization to remove nitrogen and phosphorous in the industrial wastewater. Two different polyols(PEG, PTMG) terminated with photo-crosslinkable methacrylate groups were synthesized. Structures of the prepolymers and the UV cured hydrogels were characterized by using $^1H$-NMR and FT-IR spectroscopy. Water content, mechanical strength and pore sizes of the hydrogels having different MW of polyols and different ratios of PEG/PTMG were investigated. Hydrogels prepared from PEG(MW1000) only or the mixture of PEG(MW1000) and PTMG(MW2900) with 7:3 by weight were considered as potential candidates for the matrix for the immobilization of microorganism.

  • PDF

Chemical Modification of Japanese Cedar with 2-Methacryloyloxyethyl Isocyanate (2-메타크릴로일옥시에틸 이소시아네이트에 의한 삼나무재의 화학처리)

  • Han, Gyu-Seong;Setoyama, Kouichi
    • Journal of the Korean Wood Science and Technology
    • /
    • v.28 no.1
    • /
    • pp.36-41
    • /
    • 2000
  • This study was carried out to introduce functional groups onto wood by reacting with 2-methacryloyloxyethyl isocyanate(MOI). The effects of the catalyst and the reaction conditions(temperature and time) on the treatment were investigated. The evidence of bonding between wood and MOI were examined by infrared(IR) spectroscopy. The change in surface characteristics of MOI treated wood was examined by water contact angle measurement and X-ray photoelectron spectroscopy(XPS). Wood reacted quickly with MOI in the presence of di-n-butiltin dilaurate catalyst. Especially, the increase in weight percent gain(WPG) with increasing in reaction time was remarkable at the reaction temperature of over $50^{\circ}C$. The IR spectrum of wood reacted with MOI showed a strong urethane absorption(1715 $cm^{-1}$) but no isocyanate(2235 $cm^{-1}$) absorption. It also showed a sharp olefinic C=C double bond absorption at 1635 $cm^{-1}$. This means that an introduced methacrylate group becomes the starting point of further graft copolymerization with another vinyl monomers. The wood modified with MOI showed a gradual increase in contact angle with increasing in WPG, which means that the hydrophilic wood surface become quite hydrophobic. Also, it was cleared that most parts of the wood surface were modified with MOI by XPS analysis.

  • PDF

Preparation and Characterizations of poly(arylene ether sulfone)/SiO2 Composite Membranes for Polymer Electrolyte Fuel Cell (고분자 전해질 연료전지(PEFC)용 poly(arylene ether sulfone)/SiO2 복합막의 제조 및 특성분석)

  • Shin, Mun-Sik;Kim, Da-Eun;Park, Jin-Soo
    • Membrane Journal
    • /
    • v.27 no.2
    • /
    • pp.182-188
    • /
    • 2017
  • Sulfonated poly(arylene ether sulfone) (SPAES)-3-mercaptopropyl silica gel (3MPTSG) composite membranes with improved oxidative stability were prepared for polymer electrolyte fuel cell application. It has been reported that ether part of main chain of aromatic hydrocarbon based membranes were weak to radical attack to decrease membrane durability. In this study, the hydrophilic inorganic particles were introduced by minimizing a decrease in ion conductivity and increasing an oxidative stability. The composite membranes were investigated in terms of ionic conductivity, ion exchange capacity (IEC), FT-IR, TGA and contact angle, etc. As a result, increasing amount of the 3MPTSG resulted in decrease in proton conductivities and water uptakes at 100% R.H. but enhanced thermal and oxidative stabilities.