• Title/Summary/Keyword: 치환율

Search Result 1,042, Processing Time 0.023 seconds

Settlement Behavior of Soft Ground Reinforced by Stone Columns (쇄석말뚝으로 보강된 연약지반의 침하거동)

  • Shin, Bang-Woong;Bae, Woo-Seok
    • Journal of the Korean GEO-environmental Society
    • /
    • v.1 no.1
    • /
    • pp.27-33
    • /
    • 2000
  • Stone columns is ground improvement method which is composed of compacted gravel or crushed stone inserted into the soft ground consisting of loose sand and clay by replacement method. Generally stone columns are constructed in silty clay, above 70% replacement rate for increasing the bearing capacity and shear strength. Low replacement stone columns method is limited below 30% at replacement rate-premising strength increase of clay ground is estimated efficiently. This study, laboratory model tests were conducted to investigate the consolidation drainage promotion and shear strength increase effect in soft ground with replacement rate by stone columns. The settlement reduction effect and settlement reduction coefficients increase with increasing the replacement rate in composite ground. The results of model tests indicate that consolidation promotion effect is proved. The increasing strength of composite ground was verified by vane shear tests.

  • PDF

Mechanical Properties of Lightweight Mortar in Accordance with the Particle Size and Replacement Ratio of the Wasted Tire Chip (폐타이어 분말의 치환율과 입자크기에 따른 경량 모르타르의 역학적 특성)

  • Yang, Hun;Lee, Yong;Lee, Sang-Soo
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.3 no.4
    • /
    • pp.342-347
    • /
    • 2015
  • This study is basic experiment which prevents indiscriminate reclamation and recycles the wasted tire in order to solve environmental pollution according to generation rate of the wasted tire from recently industrial development. By applying as the substitute material of the lightweight aggregate among the constructional materials in order to evaluate the lightness of the wasted tire chip and suggest the recycling plan of the wasted tire chip. The prior experiment did the replacement ratio of the wasted tire with 20%, 40%, 60%, 80%, 100%, etc. and made a study on the strength and density properties. Based on the prior experiment of wasted tire, the replacement ratio was fixed at 15, 20, 25%, particle size of wasted tire was fixed at 0.2, 0.8, 1~2, 3~5, 5~7(mm). As a result, it is supposed that the best replacement ratio and particle size are 15% and 1~2mm, respectively.

Properties of High Performance Concrete Corresponding to the Replacement Ratio of the Blast Furnace Slag (고로슬래그 미분말의 치환율 변화에 따른 고성능 콘크리트의 특성분석)

  • Kim, Seoung-Hwan;Son, Ho-Jung;Pei, Chang-Chun;Han, Min-Cheol;Baek, Joo-Hyun;Han, Cheon-Goo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.669-672
    • /
    • 2008
  • To analyze possibility for high performance concrete that massively displaces blast furnace slag, this study analyzed the characteristics of concrete by blast furnace slag displacement rate changes, and the results are summarized as follows. Firstly, as for fresh concrete characteristics, flow tended to increase and air amount decreased with increase in blast furnace slag displacement rate, and settling time was shown delayed. As for hardened concrete characteristics, in conditions where blast furnace slag displacement rate increased up to 50%, the compressive strength decreased below OPC at early age, however at age 28 days, its level was no less than that of OPC, and as for temperature rise by simple insulation, it decreased as displacement rate increased at early stage of hydration, but in the latter stage, hydration progress slowed down and hydration heat increased.

  • PDF

A study on physical characteristics of cement mortar according to change of moist mud flat replacement ratio (습윤갯벌 치환율 변화에 따른 시멘트 모르타르의 물리적 특성에 관한 연구)

  • Yang, Seonghwan;Kang, Yunyoung;Lee, Heungyeol
    • Journal of the Society of Disaster Information
    • /
    • v.13 no.3
    • /
    • pp.348-357
    • /
    • 2017
  • In this study, we examined the physical properties of cement mortar by replacing a part of the amount of fine aggregate in moist mud flat. I analyzed the possibilities of using bricks. Flow measurement results show that the flow value increases as the mixing ratio of cement and fine aggregate increases and the flow value decreased as the replacement ratio of moist mud flats decreased. Chloride contents were also found to decrease with decreasing substitution rate of moist mud flats. As a result of the compressive strength measurement, the compressive strength increased in inverse proportion as the displacement ratio of moist mud flats decreased in most mixing ratio. As a result of tensile strength measurement, the tendency was similar to compressive strength and the intensity increased as the replacement ratio of moist mud flats decreased.

Study on the Mineral Admixture Replacement Ratio for Field Application of Concrete with High Volume Mineral Admixture (혼화재 다량 치환 콘크리트의 현장 적용을 위한 혼화재 치환율에 관한 연구)

  • Lee, Jae-Hyun;Kim, Yong-Ro;Park, Jong-Ho;Jeong, Yong
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.1 no.2
    • /
    • pp.93-100
    • /
    • 2013
  • A variety of researches on the concrete with high volume mineral admixture have increased in recent years. In fact, it is very important to find appropriate replacement ratio of concrete with high volume mineral admixture in order to apply in the field. In this study, compressive strength according to fly ash and blast furnace slag replacement ratio as well as curing temperature was measured in the conditions of obtaining the same workability in order to examine the characteristics of concrete with high volume mineral admixture. In conclusion, it was found that the compressive strength at the age of 3 days decreased by 1.4MPa and the compressive strength at the age of 28 days decreased by 3.8MPa when the fly ash replacement ratio increased by 10%. Also, it was found that the compressive strength at the age of 3 days decreased by 1.0MPa and the compressive strength at the age of 28 days decreased by 0.9MPa when the blast furnace slag replacement ratio increased by 10%. Through the tests, we obtained the basic data for developing the future research on the concrete with high volume mineral admixture for housing structure.

Effect of the Kinds and Replacement Ratios of Mineral Admixtures on the Development of Concrete Resistance against the Penetration of Chloride Ions (혼화재 종류 및 치환율이 콘크리트의 내염성능 향상에 미치는 영향에 관한 연구)

  • Kim Young-Jin;Lee Sang-Soo;Kim Dong-Seuk;Yoo Jae-Kang
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.3 s.81
    • /
    • pp.319-326
    • /
    • 2004
  • This paper investigates the effect of the concrete containing mineral admixtures(pozzolanic materials such as fly-ash, ground granulated blast-furnace slag, silica fume and meta kaolin) on the resistance properties to chloride ion invasion. The purposed testing procedure was applied to the concrete replaced mineral admixtures for 3${\~}$4 replacement ratios under water-binder ratios ranged from 0.40 to 0.55. For the electro-migration test, Tang and Nilsson's method was used to estimate the diffusion coefficient of chloride ion. As a results, the water-binder ratios, kinds of mineral admixtures and replacement ratios, water curing periods had a great effect on the diffusion coefficient of chloride ion, and the optimal replacement ratios had a limitation for each mineral admixtures. Also, the use of mineral admixtures by mass(replacement of OPC) enhance the resistance ability against chloride penetration compared with the plain concrete. The compressive strength was shown related to the diffusion coefficient of chloride ion, the compressive strength increases with the diffusion coefficient of chloride ion decreasing. Below the 50 MPa, the variation of diffusion coefficient of concrete replaced mineral admixtures was bigger than that of plain concrete.

A Study on Optimum Proportion of FA and BS for Ternary Cement (3성분계 시멘트에서 FA 및 BS의 최적혼합비율 도출에 관한 연구)

  • Han, Cheon-Goo;Park, Sung-Bae
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.4 no.2
    • /
    • pp.143-148
    • /
    • 2016
  • The aim of research is inducing the optimum proportion of fly ash(FA) and blast furnace slag(BS) for ternary cement. In this research, hence, the fundamental properties of mortar mixtures were evaluated depending on various proportion of FA and BS. The results of the experiment, within the scope of the study, obtained the following conclusions. Flow of the mixtures was increased with addition of binary supplementary cementitious material(SCM), and especially, portion of FA. The air content of the mixtures was increased with addition of binary SCMs, while it was decreased with increased FA content. In the case of unit mass, increased value was obtained due to the increased air content within 25 to 45% of binary SCM content, while it was increased within 65 to 100% of binary SCM up to only 20% of FA content and decreased more than 20% of FA because of the low density of FA. The setting time of the mixtures was delayed with addition of binary SCM and FA. In the case of compressive strength, at 91-day age, the highest value was obtained with 25 and 45% of binary SCM with the proportion of FA to BS of 40 to 60. Therefore, based on the compressive strength, it is considered that the binary SCM content of 25 and 45% with the proportion of FA to BS of 2 : 3 is the most favorable conditions in this research scope.

Strength and Deformation Characteristics, and Numerial Analysis for Cement Admixed Clay and Composite Ground (시멘트 혼합토 및 복합지반의 강도, 변형 특성 및 수치해석)

  • Jeon, Jesung
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.8
    • /
    • pp.51-58
    • /
    • 2014
  • In this research, the composite grounds including original clay and soil-cement were constructed for conducting uniaxial compression test. Strength and deformation properties were analysed using results of laboratory tests with variations of water content of clay, replacement ratio and cement content. Numerical simulation using 3D distinct element method was conducted for soil cement. For strength of composite ground that contains more than cement contents of 15 %, it is more effective to increase cement content than increase of replacement ratio. Strength and elastic modulus of composite ground could be predicted by regression equations using uniaxial compression strength of clay, cement content of soil cement and replacement ratio. For strength and elastic modulus of soil cement, which is most important things for predicting final strength and elastic modulus of composite ground, numerical simulation using the distinct element method adapted bonding model could be used to verify laboratory test, and predict strength and elastic modulus.

Effect of Blast Furnace Slag on Rheological Properties of Fresh Mortar (고로슬래그미분말의 치환율 변화에 따른 굳지않은 모르타르의 레올로지 특성 검토)

  • Lim, Ji-Hee;Lee, Gun-Cheol
    • Journal of the Korea Institute of Building Construction
    • /
    • v.14 no.4
    • /
    • pp.285-291
    • /
    • 2014
  • Partial replacement of cement with blast furnace slag has many advantages such as the reduction of construction fee, the decrease of hydration heat and the increase of long-term strength. Hence, slag is widely used in practice. This study investigates the effect of slag on the rheological properties of cement paste and mortar. Three different types of slag (BS1, BS2 and BS3) with five different contents (0, 20, 40, 60 and 80 wt.%) were used to replace the cement. Each type of slag has different fineness. Water to binder ratio was 0.5. Test results showed that the partial replacement of BS1 and BS2 decreased flow and increased O-lot flow time, whereas that of BS3 caused an opposite effect, i.e., increased flow and decreased O-lot flow time. It was found that there was a good corelation between the values of yield stress and flow.

The Study of Appropriate Mixture Ratio and Replacement Ratio of Bottom Ash Mixture Compaction Pile in Soft Ground (연약지반에서 저회혼합다짐말뚝의 적정 혼합비 및 치환율 산정에 관한 연구)

  • Do, Jong Nam;Chu, Ick Chan;Chae, Hwi Young;Chun, Byung Sik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.4C
    • /
    • pp.139-147
    • /
    • 2012
  • In this study, various laboratory tests using bottom ash, which has similar engineering properties with sand, were conducted in order to solve the problem of clogging in granular compaction pile and to address sand supply and demand. In particular, testing was performed to help reduce clogging and minimize voids in a crushed stone compaction pile constructed in soft ground. Based on compaction tests and large diameter direct shear tests, an optimum mixing ratio was determined to be 80:20 (crushed stone to bottom ash) because an 80:20 mixing ratio showed the highest shear strength. Test results showed that as the bottom ash content increased above 20%, internal friction angle decreased. Another test method showed freezing and thawing had little effect when the replacement ratio was over 40%. Therefore, bottom ash mixed compaction piles in soft ground are most economical at a 40% replacement ratio.