• 제목/요약/키워드: 치형형상

검색결과 25건 처리시간 0.021초

마이크로 치형수정이 선회가공 유닛 구동기어의 동력전달 특성에 미치는 영향에 관한 연구 (Study on Effect of Micro Tooth Shape Modification on Power Transmission Characteristics based on the Driving Gear of Rotating Machining Unit)

  • 장정환;진진;김동선;우위팅;류성기
    • 한국기계가공학회지
    • /
    • 제18권6호
    • /
    • pp.91-97
    • /
    • 2019
  • Rotating machining unit is a revolutionary product that can process worm shaft or spiral shaft with fast and precise, a rotary type cutting tool, which is attached to automatic lathe and processes spiral groove on outer circumference of round bar. In this work, a study on micro tooth shape modification method of driving gear train in the rotating machining unit was presented. To observe the effect on power transmission characteristics of the driving gear pair, visualize the gear meshing condition and the load distribution on the gear teeth by using the professional gear train analysis program RomaxDesigner. By comparing the repeated analysis results, the effect of micro tooth shape modification on power transmission characteristics on driving gear can be summarized. The optimized gears were fabricated and measured by precision tester as a validation in this research.

지로터(2개의 타원 조합) 형상 및 포트 설계를 통한 오일펌프 성능인자 향상 (Performance Improvement of Oil Pump by Design of Gerotor (Combined Profile - Two Ellipses) and Port)

  • 곽효서;이승환;김철
    • 한국정밀공학회지
    • /
    • 제33권3호
    • /
    • pp.207-216
    • /
    • 2016
  • A gerotor is suitable for miniature manufacturing because it has high discharge per 1 cycle and a simple structure, while also being widely used for lubrication oil of engines and as a hydraulic source of automatic transmission. In the automobile industry, improvements in fuel efficiency and noise reduction have recently come to the fore. It has also been necessary to continuously improve the flow rate and noise of internal gear pumps for better fuel efficiency through optimal gerotor and port shape design. In this study, to develop an optimal gerotor with a new lobe shape, 2-ellipses-combined, the equation of the lobe shape was derived, and CFD analysis results were compared for 2-ellipses with those of the previous gerotors (3-ellipses and ellipse1-involuteellipse2). A performance test for the oil pump with the optimal rotor (2-ellipses) was carried out and showed good agreement with the results obtained from CFD analysis.

타원의 치형 형상을 갖는 로터 설계 자동화 시스템 개발 (Development of an Automated Design System for Oil Pumps with Ellipse Lobe Profile)

  • 정성윤;한승무;김철
    • 한국정밀공학회지
    • /
    • 제26권1호
    • /
    • pp.120-129
    • /
    • 2009
  • An internal lobe pump is suitable for oil hydraulics of machine tools, automotive engines, compressors, constructions and other various applications. In particular, the pump is an essential machine element of an automotive engine to feed lubricant oil. The subject of this paper is the theoretical analysis of internal lobe pump whose the main components are the rotors: usually the outer one is characterized by lobes with elliptical shape, while the inner rotor profile is determined as conjugate to the other. And the integrated system which is composed of three main modules has been developed through AutoLISP under AutoCAD circumstance. It generates new lobe profile and calculates automatically the flow rate and flow rate irregularity according to the lobe profile generated. Results obtained from the analysis enable the designer and manufacturer of oil pump to be more efficient in this field.

기어류 부품의 단조에 관한 상계해석 (Upper Bound Analysis on the Forging of Gear-Like Components)

  • Min, G.S.;Park, J.U.;Lee, H.C.
    • 한국정밀공학회지
    • /
    • 제14권2호
    • /
    • pp.102-112
    • /
    • 1997
  • This paper describes the method that can construct kinematically admissible velocity fields for forging of gear-like components which have tooth shape around the cylinder. The kinematically admissible velo- city fields for the various gear-like components, involute spur gear, trapezoidal spline, square spline, ser- ration and trochoidal gear, were constructed by pilling up the velocity components according to the shape of tooth and billet. The billets, of hollow and solid, were Al 2218 and 2024. To verify the method, the analyses and experiments were carried out and compared with each other. For analyses, the half pitches of com- ponents were divided into several deformation regions based on their tooth profile. A neutral surface was used to represent the inner flow of material during forging. Its location varied with the energy optimazation and its contour varied with the number of teeth. In experiment, the contour of material filling up the tooth zone is hyperbolic curve caused by the frictional drag on the interface of die-wall/workpiece but, in the analysis, it is an arc which retains the same contour during all forging operation.

  • PDF

장구형 웜 나사의 절삭 엔드밀 공구 형상에 따른 치형 정밀도 분석 (Analysis of Tooth Profile Accuracy of Enveloping Worm Thread Depending on End Mill Tool Shape)

  • 강신준;김용환
    • 소성∙가공
    • /
    • 제28권4호
    • /
    • pp.183-189
    • /
    • 2019
  • Cylindrical worm reducers are generally used in various fields and forms throughout the industry, and demand is increasing due to their role as an integral part of the industry. Market trends require high-load, high-precision components, and small-sized reducers with large loads. When using a cylindrical worm reducer, a reducer designed with a reduced center distance while maintaining the same output torque results in gear wear. To overcome this difficulty, an enveloping worm gear reducer is introduced and studied. In this paper, three types of end mill tools are used to evaluate the tooth profile accuracy for each tool shape during machining of the tooth profile for a non-developed surface worm thread. The effect of the endmill shape on the accuracy of the tooth profile was analyzed by performing 3D modeling of the surrounding worm tooth profile based on the Hindley method. In this study, we analyzed tooth profile accuracy, tooth surface roughness, and tooth surface machining time, etc. Through the study, efficient machining conditions for the enveloping worm gears and the influence of parameters on the process were presented.