• Title/Summary/Keyword: 치축

Search Result 63, Processing Time 0.016 seconds

A Study on the changes of periodontal tissue after orthodontic tooth movement in young adult dogs (유성견에서 교정적 치아이동에 따른 치주조직 변화에 관한 연구)

  • Kang, Nam-Yong;Yoon, Young-John;Kim, Kwang-Won
    • The korean journal of orthodontics
    • /
    • v.27 no.4 s.63
    • /
    • pp.559-568
    • /
    • 1997
  • For orthodontic tooth movement, optimal orthodontic force should be maintained without periodontal breakdown and alveolar bone should be remodeled physiologically Therefore, To obtain proper occlusion through tooth movement within alveolar bone, we should know the biomechanics of teeth and supporting 4issues. The present study was performed to observe histologic changes of periodontal tissue immediately after application of orthodontic force and during the retention period in growing young adult dogs. In this study, experimental group contained between mandibular left canine and 1st molar and control group contained contralateral teeth of same animal. The .018'x.022' stainless steel closed coil spring(Dentaurum Co.) was ligated on the experimental teeth at initial 200gm-force from mandibular canine to 1st molar The animals(4 to 6 months aged young adult dogs) were sacrificed on 0, 14, 28 days after the finish of appliance activation, and then tissue samples were divided into hematoxylin-eosin(HE) staining section, ground section, alkaline phosphatase(ALP) staining section, and tartrate-resistant acid phosphatase(TRAP) staining section. Thereafter, the preparations were examined under light microscopy The following results were obtained: 1. Immediately after the finish of appliance activation, the periodontal space was increased in tension side, but decreased in pressure side compared to that of control. The hyalinized zone was also observed in the periodontium. 2. After the 14-day retention, peridontal space was decreased in tension side and slightly increased in pressure side compared to that of immediately after the finish of appliance activation. The hyalinized zone was repaired and a few osteoblasts showing slightly new bone formation were seen. Osteoblasts were scarcely observed along the alveolar bone. 3. Aftter the 28-day retention, the periodontal fibers are normally repaired. A lot of TRAP(+) osteoclasts md increased alveolar bone resorption were observed in pressure side, and AP(+) osteoblast and increased new bone formation were observed in tension side.

  • PDF

Distortion of tooth axes on panoramic radiographs taken at various head positions (두부 위치 변화에 따른 파노라마 방사선사진상의 치축각도의 왜곡)

  • Jeon, Hyun-Sang;Choi, Gab-Lim;Lim, Sung-Hoon;Kim, Kwang-Won
    • The korean journal of orthodontics
    • /
    • v.38 no.4
    • /
    • pp.240-251
    • /
    • 2008
  • Objective: The purpose of this study was to evaluate the effect of head position changes on the root parallelism between adjacent teeth on panoramic radiographs. Methods: A model with normal occlusion was constructed in the SolidWorks program, then RP (rapid protyping) model was fabricated. The model was repeatedly imaged and repositioned five times at each of the following nine positions: ideal head position, $5^{\circ}$ up, $10^{\circ}$ up, $5^{\circ}$ down, $10^{\circ}$ down, $5^{\circ}$, right, $10^{\circ}$, up, and $5^{\circ}$ right rotation, $10^{\circ}$ right rotation. Panoramic radiographs were taken by Planmeca ProMax and the angle between the long axes of adjacent teeth was directly measured in the monitor. Results: Axes of adjacent teeth tended to converge toward the occlusal plane when the head tilted up and converged in the opposite direction to the occlusal plane when the head tilted down. Anterior teeth showed the most notable differences. When one side of the head tilted up $5^{\circ}$ and $10^{\circ}$ along the anteroposterior axis (Y axis), tooth axes of the same side tended to converge toward the occlusal plane and tooth axes of the opposite side tended to converge in the opposite direction to the occlusal plane. When the head rotated to one side along the vertical axis (Z axis), the canine and lateral incisor of the same side converged in the opposite direction to the occlusal plane and the canine and lateral incisor of the other side converged toward the occlusal plane. Conclusions: When assessing the root parallelism on panoramic radiographs, the occlusal plane cant (anteroposterior or lateral) or asymmetry of the dental arch should be considered because these can cause distortion of tooth axes on panoramic radiographs.

Three-dimensional finite element analysis on intrusion of upper anterior teeth by three-piece base arch appliance according to alveolar bone loss (치조골 상실에 따른 three-piece base arch appliance를 이용한 상악전치부 intrusion에 대한 3차원 유한요소법적 연구)

  • Ha, Man-Hee;Son, Woo-Sung
    • The korean journal of orthodontics
    • /
    • v.31 no.2 s.85
    • /
    • pp.209-223
    • /
    • 2001
  • At intrusion of upper anterior teeth in patient with periodontal defect, the use of three-piece base arch appliance for pure intrusion is required. To investigate the change of the center of resistance and of the distal traction force according to alveolar bone height at intrusion of upper anterior teeth using this appliance, three-dimensional finite element models of upper six anterior teeth, periodontal ligament and alveolar bone were constructed. At intrusion of upper anterior teeth by three-piece base arch appliance, the following conclusions were drawn to the locations of the center of resistance according to the number of teeth, the change of distal traction force for pure intrusion and the correlation to the change of vertical, horizontal location of the center of resistance according to alveolar bone loss. 1. When the axial inclination and alveolar bone height were normal, the anteroposterior locations of center of resistance of upper anterior teeth according to the number of teeth contained were as follows : 1) In 2 anterior teeth group, the center of located in the mesial 1/3 area of lateral incisor bracket. 2) In 4 anterior teeth group. the center of resistance was located in the distal 2/3 of the distance between the bracket of lateral incisor and canine. 3) In 6 anterior teeth group, the center of resistance was located in the central area of first premolar bracket .4) As the number of teeth contained in anterior teeth group increased, the center of resistance shifted to the distal side. 2. When the alveolar bone height was normal, the anteroposterior position of the point of application of the intrusive force was the same position or a bit forward position of the center of resistance at application of distal traction force for pure intrusion. 3. When intrusion force and the point of application of the intrusive force were fixed, the changes of distal traction force for pure intrusion according to alveolar bon loss were as follows :1) Regardless of the alveolar bone loss, the distal traction force of 2, 4 anterior teeth groups were lower than that of 6 anterior teeth group. 2) As the alveolar bone loss increased, the distal traction forces of each teeth group were increased. 4. The correlations of the vertical, horizontal locations of the center of resistance according to maxillary anterior teeth groups and the alveolar bone height were as follows : 1) In 2 anterior teeth group, the horizontal position displacement to the vortical position displacement of the center of resistance according to the alveolar bone loss was the largest. As the number of teeth increased, the horizontal position displacement to the vertical position displacement of the center of resistance according to the alveolar bone loss showed a tendency to decrease. 2) As the alveolar bone loss increased, the horizontal position displacement to the vertical position displacement of the center of resistance regardless of the number of teeth was increased.

  • PDF