• Title/Summary/Keyword: 치수경제성

Search Result 166, Processing Time 0.021 seconds

Integrated Approach for Watershed Management in an Urban Area (도시 유역 관리를 위한 통합적인 접근방법)

  • Lee, Kil-Seong;Chung, Eun-Sung;Kim, Young-Oh
    • Journal of Korea Water Resources Association
    • /
    • v.39 no.2 s.163
    • /
    • pp.161-178
    • /
    • 2006
  • Heathcote (1998) identified a systematic, seven-step approach to general watershed planning and management. It consists of 1) understanding watershed components and processes, 2) identifying and ranking problems to be solved, 3) setting clear and specific goals, 4) developing a list of management options, 5) eliminating infeasible options 6) testing the effectiveness of remaining feasible options, and 7) developing the final options. In this study the first five steps of that process were applied to the Anyangcheon watershed in Korea, which experiences streamflow depletion, frequent flood damages, and poor water quality typical of highly urbanized watersheds. This study employed four indices: Potential Flood Damage(PFD), Potential Streamflow Depletion(PSD), Potential Water Quality Deterioration(PWQD) and Watershed Evaluation Index(WEI) to identify and quantify problems within the watershed. WEI is the integration index of the others. Composite programming which is a method of multi-criteria decision making is applied for the calculation of PSD, PWQD and WEI (Step 2). The primary goal of the study is to secure instreamflow in the Anyangcheon during dry seasons. The second management goals of flood damage mitigation and water quality enhancement are also set (Step 3). Management options include not only structural measures that can alter the existing conditions, but also nonstructural measures that rely on changes in human behavior or management practices (Step 4). Certain management options which are not technically, economically, and environmentally feasible, are eliminated (Step S). Therefore, this study addresses a Pre-feasibility study, which established a master plan using Steps 1 through 5.

Case study for effective water cycle system design (효율적 물순환시스템 구축을 위한 선진 설계사례 조사)

  • Kim, Young-Jin;Park, Dong-Jin;Kim, Ji-Hun;Yu, Dong-Bae;Koo, Bon-Jin
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.320-320
    • /
    • 2012
  • 수문학적 의미의 일반적인 물순환은 증발, 응결, 강수 등 태양에너지와 중력에 의해 전지구적으로 반복되는 물의 재생산과정을 의미한다. 최근 들어 토목분야에서 언급되기 시작한 물순환시스템은 수문학적인 물수지(water balance)에 저류, 공급, 처리, 재이용 등 인공적인 요소를 감안하여 대상지역의 적절한 수요, 공급을 유지하는 시스템을 의미한다. 생활에서 물이 차지하는 중요성을 감안할 때, 지역의 수문학적 특성과 문화, 경제적 여건을 고려한 효율적인 물순환시스템의 구축은 지역발전의 정도를 가늠할 수 있는 지표라 할 수 있다. 본 연구는 물산업 선진국인 영국과 미국의 지역 물순환시스템 설계사례를 조사하고 초기단계인 국내사례와 비교하여 향후 설계지침 개발의 기초자료로 활용하기 위하여 수행되었다. 선진사례 조사는 2009년 이후 미국과 영국에서 수행된 세 건의 물순환 현황조사(water cycle study)와 미국에서 개발된 설계최적화 프로그램을 분석하였고, 국내사례로는 파주운정지구와 광교신도시 개발 시 수행된 물순환시스템 구축사례를 조사하였다. 해외 선진국 사례조사 결과, 물순환시스템 구축은 공통적으로 물순환망 현황조사, 물순환 계획수립, 지역현황 조사, 적용가능 기술조사, 설계 등 5단계를 거쳐 수행되었다. 이 중 가장 중요한 단계는 지역의 물수지와 가용 물 수요 및 공급 시스템을 조사하는 물순환망 현황조사로, 지역의 needs를 정확히 파악하고 양적, 질적 공급목표를 적절하게 선정하여 가장 효율적인 물순환망 계획을 수립하는 바탕이 되었다. 지역현황은 지역 법규 및 투자계획, 사회변화 예측 등 사회적 요소를 고려하는 단계로, 물순환 설계 선진사의 설계 최적화 프로그램의 경우 이러한 지역현황과 사회적 변화 예측의 반영에서 차별성을 갖고 있었다. 적용가능 기술조사의 경우 친환경, 저에너지 기술이 부각되던 추세에서 최근에는 지속가능성이 주요 고려사항 이었다. 국내사업 사례의 경우 규모가 작아 직접적인 비교가 불가하였으나, 5단계의 복잡한 최적화단계가 아닌 물순환망 분석결과와 이해당사자(stakeholders)의 needs를 바탕으로 치수안정성, 친수환경 보장 등의 목표를 수립하였다. 국내에서도 향 후 유역규모(watershed scale)의 대형 물순환기반 복합개발사업이나 대규모 해외사업 참여 시 필요한 기술력 축적의 차원에서 단계별 check list를 포함한 한차원 높은 물순환 설계지침 마련이 필요한 시점이라 하겠다.

  • PDF

Investigating the Partial Substitution of Chicken Feather for Wood Fiber in the Production of Wood-based Fiberboard (목질 섬유판 제조에 있어 도계부산물인 닭털의 목섬유 부분적 대체화 탐색)

  • Yang, In;Park, Dae-Hak;Choi, Won-Sil;Oh, Sei Chang;Ahn, Dong-uk;Han, Gyu-Seong;Oh, Seung Won
    • Korean Chemical Engineering Research
    • /
    • v.56 no.4
    • /
    • pp.577-584
    • /
    • 2018
  • This study was conducted to investigate the potential of chicken feather (CF), which is a by-product in poultry industry, as a partial substitute of wood fiber in the production of wood-based fiberboard. Keratin-type protein constituted the majority of CF, and its appearance did not differ from that of wood fiber. When the formaldehyde (HCHO) adsorptivities of CF compared by its pretreatment type, feather meal (FM), which was pretreated CF with high temperature and pressure and then grounded, showed the highest HCHO adsorptivity. In addition, there was no difference between the adsorbed HCHO amounts, which was measured by dinitrophenylhydrazine method, of scissors-chopped CF and CF beated with an electrical blender. Mechanical properties and HCHO emission of medium-density fiberboards (MDF), which were fabricated with wood fiber and 5 wt% CF, beated CF or FM based on the oven-dried weight of wood fiber, were not influenced by the pretreatment type of CF. However, when the values compared with those of MDF made with just wood fiber, thickness swelling and HCHO emission of the MDF were improved greatly with the addition of CF, beated CF or FM. Based on the results, it might be possible to produce MDF with improved dimensional stability and low HCHO emission if CF, beated CF or FM is added partially as a substitute of wood fiber in the manufacturing process of MDF produced with the conventional urea-formaldehyde resin of $E_1$ grade. However, the use of CF or FM in the production of MDF has a low economic feasibility at the current situation due to the securing difficulty and high cost of CF. In order to enhance the economic feasibility, it requires to use CF produced at small to medium-sized chicken meat plants. More importantly, it is considered that the technology developed from this research has a great potential to make provision for the prohibition of animal-based feed and to dispose environmentally avian influenza-infected poultry.

The Influence of the Direction of Applied Load(Compression and Uplift) and the Diameter of the Pile on the Pile Bearing Capacity (하중 작용 방향(압축과 인발)과 말뚝의 직경이 말뚝 지지력에 미치는 영향)

  • 이명환;윤성진
    • Geotechnical Engineering
    • /
    • v.7 no.3
    • /
    • pp.51-64
    • /
    • 1991
  • The reliable estimation of pile bearing capacity is essential for the improvement of the re- liability and the cost-effectiveness of the design. There have been numerous pile bearing capacity prediction methods proposed up to now, however, execpt for the estimation made from the result of the pile loading test, not one method is appropriate for the reliable prediction. Due to the considerable time and expenses required to carry out the pile loading test, the test has seldom been utilized. The development of Simple Pile Loading Test(SPLT) which utilizes the pile skin friction as the required reaction force to cause the pile tip settlement, provides a solution to perform more pile loading tests and consequently a more economical pile design is possible. The separate measurement of skin friction and tip resistance during the course of performing SPLT provides a better understanding of the pile behavior than the result of the conventional pile loading test where only the total resistance is measured. On the other hand, there are some points to be clarified in order to apply the test results of SPLT to practical problem. They are the direction of the applied load to mobilize the skin friction and the use of reduced sized sliding core. In this research, both the SPLT and the conventional pile loading test on 406mm diameter steel pipe pile have been performed. From the result, it would be safe to use the measured SPLT skin friction value directly in the design, since the value is somewhat lower than the value measured in the conventional test. It is further assumed that the tip resistance value of the reduced sized sliding core should properly be analysed by taking the incluonce of scale effect into consideration.

  • PDF

Design of Truss Structures with Real-World Cost Functions Using the Clustering Technique (클러스터링 기법을 이용한 실 경비함수를 가진 트러스 구조물의 설계)

  • Choi, Byoung Han;Lee, Gyu Won
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.2
    • /
    • pp.213-223
    • /
    • 2006
  • Conventional truss optimization approaches, while often sophisticated and computationally intensive, have been applied to simple, minimum weight-cost models. These approaches do not perform well when applied to real-world trusses, which have costmodels that are complex and which often involve multiple objectives. Thus, this paper describes the optimization strategies that a clustering technique, which identifies members that are likely to have the same product type, uses for the optimal design of truss structures with real- world cost functions that consider the costs on the weight of the truss, the number of products in the design, the number of joints in the structures, and the costs required in the site.At first, the clustering technique is applied to identify the members and to generate a proper initial solution. A simple taboo search technique is then used, which attempts to generate the optimal solution by starting with the solution from the previous technique. For example, the proposed approach is a plied to a typical problem and to a problem similar to relative performances. The results show that this algorithm generates not only better-quality solutions but also more efficient ones

A Study on the Optimal Limit State Design of Reinforced Concrete Flat Slab-Column Structures (한계상태설계법(限界狀態設計法)에 의한 철근(鐵筋)콘크리트 플래트 슬라브형(型) 구조체(構造體)의 최적화(最適化)에 관한 연구(研究))

  • Park, Moon Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.4 no.1
    • /
    • pp.11-26
    • /
    • 1984
  • The aim of this study is to establish a synthetical optimal method that simultaneously analyze and design reinforced concrete flat slab-column structures involving multi-constraints and multi-design variables. The variables adopted in this mathematical models consist of design variables including sectional sizes and steel areas of frames, and analysis variable of the ratio of bending moment redistribution. The cost function is taken as the objective function in the formulation of optimal problems. A number of constraint equations, involving the ultimate limit state and the serviceability limit state, is derived in accordance with BSI CP110 requirements on the basis of limit state design theory. Both objective function and constraint equations derived from design variables and an analysis variable generally become high degree nonlinear problems. Using SLP as an analytical method of nonlinear optimal problems, an optimal algorithm is developed so as to analyze and design the structures considered in this study. The developed algorithm is directly applied to a few reinforced concrete flat slab-column structures to assure the validity of it and the possibility of optimization From the research it is found that the algorithm developed in this study is applicable to the optimization of reinforced concrete flat slab column structures and it converges to a optimal solution with 4 to 6 iterations regardless of initial variables. The result shows that an economical design can be possible when compared with conventional designs. It is also found that considering the ratio of bending moment redistribution as a variable is reasonable. It has a great effect on the composition of optimal sections and the economy of structures.

  • PDF