• 제목/요약/키워드: 치과 응력 분석

검색결과 253건 처리시간 0.02초

유한요소법을 이용한 임플란트 고정체의 삼각배열에 따른 지지골의 응력 분석 (Finite element stress analysis on supporting bone by tripodal placement of implant fixture)

  • 손성식;이명곤
    • 대한치과기공학회지
    • /
    • 제31권1호
    • /
    • pp.7-15
    • /
    • 2009
  • Purpose: This study was to propose the clear understanding for stress distribution of supporting bone by use of staggered buccal offset tripodal placement of fixtures of posterior 3 crown implant partial dentures. We realized posterior 3 crown implant fixed partial dentures through finite element modeling and analysed stress effect of implant arrangement location to supporting bone under external load using finite element method. Method: To understand stress distribution of 3 crown implant fixed partial dentures which have 2 different arrangement by finite element analysis. In each model, for loading condition, we applied $45^{\circ}$ oblique load to occlusal surface of crown and applied 100 N for 3 crown individually(total 300 N) for imitating possible oral loading condition. at this time, we calculated Von Mises stress distribution in supporting bone through finite element method. Result: When apply $45^{\circ}$ oblique load to in-line arrangement model, maximum stress result for 100 N for each 3 crown 47.566MPa. In tripodal placement, result for 1mm buccal offset tripodal placement implant model was maximum distributed load 51.418MPa, so result was higher than in-line arrangement model. Conclusion: In stress distribution result by placement of implant fixture, the most effective structure was in-line arrangement. The tripodal placement does not effective for stress distribution, gap cause more damage to supporting bone.

  • PDF

직접유지장치 설계 변화에 따른 하악 후방연장 국소의치 지지조직의 광탄성 응력분석 (PHOTOELASTIC STRESS ANALYSIS ON THE SUPPORTING TISSUE OF MANDIBULAR DISTAL EXTENSION REMOVABLE PARTIAL DENTURE WITH VARIOUS DESIGN OF DIRECT RETAINERS)

  • 이창호;김광남;장익태
    • 대한치과보철학회지
    • /
    • 제30권2호
    • /
    • pp.203-224
    • /
    • 1992
  • The purpose of this study was to evaluate the stress distribution developed in supporting structures by distal extension removable partial denture with 4-types of direct retainer. The direct retainers examined were Akers clasp, RPI clasp, RPA clasp and RPL clasp in bilateral & unilateral free end case. 3-dimensional photoelastic stress analysis was used to record the isochromatic fringe patterns and to calculate the compressive stress at measuring points. The results were as follows. 1. In bilateral free end case, RPI clasp exhibited the similar stress distribution on distal and mesial alveolar crest but Akers clasp exhibited higher stress concentration on distal alveolar crest than mesial alveolar crest. 2. In bilateral free end case, RPA clasp and RPL clasp exhibited the similar stress distribution on distal and mesial alveolar crest and RPL clasp exhibited higher stress concentration on buccal alveolar crest than lingual alveolar crest. 3. Akers clasp produced high stress concentration on residual alveolar ridge distally, but RPI clasp, RPA clasp and RPL clasp produced even stress distribution on residual alveolar ridge. 4. Removable partial denture in unilateral free end case exerted higher stress on abutment tooth root apex than bilateral distal extension removable partial denture.

  • PDF

유한요소 분석을 이용한 하중 위치에 따른 구치부 임플란트 국소의치 지지골의 응력 분포 연구 (Finite element analysis of stress distribution on supporting bone of posterior implant partial dentures by loading location)

  • 손성식;김영직;이명곤
    • 대한치과기공학회지
    • /
    • 제29권1호
    • /
    • pp.93-101
    • /
    • 2007
  • The purpose of this study is to evaluate the effect of three different oblique mechanical loading to occlusal surfaces of posterior implant partial dentures on the stress distributions in surrounding bone, using 3-dimensional finite element method. A 3-dimensional finite element model of a posterior implant partial dentures composed of three unit implants, simplified 3 gold alloy crown and supporting bone was developed according to the design of AVANA self tapping implant for this study. Three kinds of surface distributed oblique loads(300 N) are applied to following occlusal surfaces in the three crowns; 1) All occlusal surfaces in the three crown(load of 300 N was shared to three crown), 2) Occlusal surface of centered crown (load of 300 N was applied to a centered crown), 3) Occlusal surface of proximal crown(load of 300 N was applied to a distal proximal crown). In the results, 141 MPa of maximum von Mises stress was calculated at third loading condition and 98 MPa of minimum von Mises stress was calculated at first loading condition. From the results, location and type of occlusive loading conditions are important for the safety of supporting bone.

  • PDF

유한요소법을 이용한 비귀금속-도재관 변연부 형태에 따른 응력 분포 분석 (Finite Element Analysis on Stress Distribution in Base Metal-Ceramic Crown Margin Designs)

  • 이명곤;신정욱;김명덕
    • 대한치과기공학회지
    • /
    • 제22권1호
    • /
    • pp.79-88
    • /
    • 2000
  • The objective of this finite element method study was to analyze the stress distribution induced in a maxillary central incisor Ni-Cr base metal coping ceramic crowns with various margin design. Margin designs of crown in this experiment were knife-edge metal margin on chamfer finishing line of tooth preparation(M1), butt metal margin on shoulder finishing line(M2), reinforced butt metal margin on shoulder finishing line(M3), beveled metal margin on bevelde shoulder finishing line(M4). Two- dimensional finite element models of crown designs were subjected to a simulated biting force of 100N which was forced over porcelain near the lingual incisal edge. Base on plane stress analysis, the maxium von Miss stresses(Mpa) in porcelain venner was 0.432, in metal coping was 0.579, in dentin abutment was 0.324 for M1 model, and M2 model revealed in porcelain was 0.556, in metal coping was 0.511, in dentin was 0.339, and M3 model revealed in porcelain was 0.556, in metal coping was 0.794, in dentin was 0.383 for M4 model. All values of each material in metal-ceramic crown were much below the critical failure values.

  • PDF

유한요소법을 이용한 교합 하중 위치에 따른 임플란트 지지골의 응력분포 비교분석 (A Comparative Analysis of Stress Distribution in the Implant Supporting Bone by Occlusal Loading location Utilizing the Finite Element Method)

  • 이명곤;김영직;김치영
    • 대한치과기공학회지
    • /
    • 제27권1호
    • /
    • pp.105-113
    • /
    • 2005
  • The purpose of this study is to evaluate the effect of loading at three different occlusal surface position of the gold alloy crown on the stress distributions in surrounding bone, utilizing 3-dimensional finite element method. A three dimensional finite element model of an implant with simplified gold alloy crown and supporting bone was developed for this study. A oblique or vertical load of 100 N was applied at the following position at each FE model : 1) center of occlusal surface, 2) a point on the buccal side away from center of occlusal surface (COS) by 2.8mm, 3) a point on the lingual side away from COS by 2.8mm. In the results, Minimum von Mises stresses under vertical load or oblique load of 100N were about 6MPa at the center of occlusal surface and about 40MPa at the point on the buccal side, respectively. From the results we could come to the conclusion that occlusive loading position could be an important factor for establishment of structural safety of supporting bone.

  • PDF

압축하중시 RPI clasp의 3가지 다른 proximal plate 형태에 따른 지대치 주위조직의 광탄성 응력 분석 (Photoelastic Stress Analysis of the Abutment Surrounding Tissue According to Shape of the Proximal Plate of the RPI Clasp)

  • 최정수;김부섭
    • 대한치과기공학회지
    • /
    • 제34권4호
    • /
    • pp.473-482
    • /
    • 2012
  • Purpose: The purpose of this study was to investigate the stress distribution of the surrounding tissues according to 3 proximal plate types of the RPI clasp. Methods: The removeable partial denture which mandibular right and left second premolars and mandibular molars were lost was attached to a three dimensional photo elastic epoxy resin model. Then 120N of vertical load was applied. After 3-dimensional photoelastic stress analysis was used to record the isochromatic fringe patterns. Results: Kratochvil type guiding plane exhibited little uniform stress distribution on load center and alveolar ridge, but higher stress concentration on buccal surface of second premolar. Krol type guiding plane exhibited the stress concentration on the front of load center and relatively higher stress concentration on buccal surface of first premolar. However, this type had no effect on canine. Researcher type guiding plane showed the stress concentration on second premolar and molar, but the little stress distribution on first premolar. Conclusion: In all types, excessive stress concentration was appeared and three types were not significant different.

Overdenture의 지대치 Coping형태에 따른 광탄성 응력 분석 (TWO-DIMENSIONAL PHOTOELASTIC ANALYSIS ON VARIOUS TYPES OF COPING DESIGNS UNDER OVERDENTURE)

  • 양혜령;방몽숙
    • 대한치과보철학회지
    • /
    • 제29권2호
    • /
    • pp.103-115
    • /
    • 1991
  • This study was executed to analyze the stress distribution of tooth, supporting structure and overdenture by two-dimensional photoelastics when 6 types of coping were inserted. Types of coping were designed to be inclined plane, short dome, medium dome, shore square, medium square and o-p anchor attachment. Fortes were applied respectively as follows: 1) Vertical load of 10 kg on the incisal edge 2) $30^{\circ}$ diagonal load of 8 kg on the labial surface. The results were as follows: 1. In case of short dome and o-p anchor attachment, the stress is evenly distributed on teeth, supporting tissue structure under vertical and $30^{\circ}$ diagonal load, then short dome and o-p anchor attachment show better stress distribution and stabilization of overdenture than any other coping under labial diagonal load. 2. Inclined plane revealed greater tendency of displacement of overdenture than any other coping under labial diagonal load. 3. Long height of copings had greater concentration of stress than short height of copings. 4. In case of medium dome under labial diagonal load, there were high level of stress concentration on denture base contacted labioincisal angle of coping.

  • PDF

유한 요소법을 이용한 수종 심미 수복물의 응력 분석 (STRESS ANALYSIS OF VARIOUS ESTHETIC RESTORATIONS BY FINITE ELEMENT METHOD)

  • 조진희;방몽숙
    • 대한치과보철학회지
    • /
    • 제29권2호
    • /
    • pp.129-145
    • /
    • 1991
  • The purpose of this study was to analyze the stresses and displacements of various esthetic restorations and abutment teeth. The finite element models of central incisor were divided into four groups according to the types of restoration. Three load cases were applied; 1) 45 degrees on the incisal edge, 2) horizontal force on the labial surface, and 3) 26 degrees diagonally on the lingual surface. Material property, geometry, and load conditions of each model were inputed to the two dimensional finite element program and stresses and displacements were analyzed. Results were as follows; 1. In the cases of porcelain fused gold ann and porcelain laminate venner, stresses were equally distributed in supporting abutment tooth. 2. The metal coping of porcelain fused gold u and collarless porcelain fused gold crown functioned as a good stress distributor. 3. When the horizontal load applied, the highest tensile and compressive stresses were seen in the cervical margin of restoration and the dentin of the abutment tooth. 4. The highest displacement of restoration was seen when load was applied at an mee of 26 degrees diagonally in lingual surface of tooth in centric occlusion. 5. The influence of loading direction on the stresses and displacements in the restoration was greater than that of various design. 6. The possibility of fracture was highest in porcelain jacket crown.

  • PDF

구치부(臼齒部) 도재전장주조관(陶在前裝鑄造冠) 변연형태(邊緣形態)에 따른 응력분석(應力分析) (Stress Analysis of Posterior Porcelain-Fused-to-Metal Crown by Marginal Configurations)

  • 김광석;송광엽;박찬운
    • 대한치과보철학회지
    • /
    • 제25권1호
    • /
    • pp.161-179
    • /
    • 1987
  • To study the mechanical behaviors of the margins of porcelain-fused-to-metal crown on the posterior teeth, 5 types of margins on the lower first molar were chosen, and then the finite element models were constructed. 50kg forces were applied to the porcelain on the axial wall supported by the metal vertically. The displacements and stresses of the porcelain-fused-to-metal crown were analyzed to investigate the influence of the type of margins. The results were as follows; 1. High tensile stresses were exhibited on the porcelain of the portion of the coronal line angle insufficient metallic support. 2. In case metal coping had a good supporting form to vertical force, uniform compressive stresses were exhibited on their supporting form. 3. Tensile stresses in the inframetallic margin on the series of the shoulder with a bevel margins were decreased in the bevel portion. 4. Principal stresses on the metal of the chamfer marginal portion were decreased comparing with the series of the shoulder margins. 5. The noticeable compressive stress gradients were exhibited between axial cement layer and metal on the series of the shoulder margins. 6. The principal stresses on the marginal cement layer were higher than that of the occlusal surface and axial wall.

  • PDF

스트레인 게이지를 이용한 임플랜트 지지 오버덴춰의 응력분석 (A STRESS ANALYSIS OF THE IMPLANT - SUPPORTED OVERDENTURE USING STRAIN GAUGE)

  • 조혜원;권주홍;이화영
    • 대한치과보철학회지
    • /
    • 제37권1호
    • /
    • pp.93-103
    • /
    • 1999
  • Stress distribution on mandibular implants supporting overdentures were registered in vitro experimental model by means of 4 rosette gauges which were placed around the implant. The overdenture attachments used in this study were the Resilient Dolder bar, Rigid Bolder bar, Round bar, Hader bar & Dal-Ro attachment. An occlusal jig was placed on the overdenture and the loading sites were 3 points which mimicked working, balancing, and median relations. With 5 and 10kg loading, strains were measured by strain indicator(P-3500, Measurement group, Raleigh, USA), and using these data, maximum and minimum principal stresses and Von Mises stress were calculated and evaluated. The results were as follows : There was a tendency of high stress concentration in the lingual side of the implant, and in the buccal side low stress was developed regardless of the attachment systems. The resilient Bolder bar concentrated highest stress among the attachment systems, and the Round bar and the Dal-Ro attachment provided comparatively low stresses around the implant. The rigid Bolder bar concentrated high stress in the mesial side, and the Dal-Ro attachment developed tensile stress patterns in the lingual and distal sides of the implant at the balancing relation.

  • PDF