• Title/Summary/Keyword: 층류제트

Search Result 57, Processing Time 0.02 seconds

Study on Heat-Loss-Induced Self-Excitation in Laminar Lifted Jet Flames (층류제트 부상화염에서 열손실에 의한 자기진동에 관한 연구)

  • Yoon, Sung-Hwan;Park, Jeong;Kwon, Oh-Boong;Kim, Jeong-Soo;Bae, Dae-Seok;Yun, Jin-Han;Keel, San-In
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.3
    • /
    • pp.309-319
    • /
    • 2011
  • We experimentally investigated lifted propane jet flames diluted with nitrogen to obtain flame-stability maps based on heat-loss-induced self-excitation. We found that heat-loss-induced self-excitations are caused by conductive heat loss from premixed flame branches to trailing diffusion flames as well as soot radiation. The conductive-heat-loss-induced self-excitation at frequencies less than 0.1 Hz is explained well by a suggested mechanism, whereas the oscillation of the soot region induces a self-excitation of lift-off height of the order of 0.1 Hz. The suggested mechanism is also verified from additive experiments in a room at constant temperature and humidity. The heat-loss-induced self-excitation is explained by the Strouhal numbers as a function of the relevant parameters.

Effect of Coflow Air Velocity on Heat-loss-induced Self-excitation in Laminar Lifted Propane Coflow-Jet Flames Diluted with Nitrogen (질소로 희석된 프로판 동축류 층류 제트 부상화염에서 열손실에 의한 자기진동에 대한 동축류 속도 효과)

  • Lee, Won-June;Yoon, Sung-Hwan;Park, Jeong;Kwon, Oh-Boong;Park, Jong-Ho;Kim, Tae-Hyung
    • Journal of the Korean Society of Combustion
    • /
    • v.17 no.1
    • /
    • pp.48-57
    • /
    • 2012
  • Laminar lifted propane coflow-jet flames diluted with nitrogen were experimentally investigated to determine heat-loss-related self-excitation regimes in the flame stability map and elucidate the individual flame characteristics. There exists a critical lift-off height over which flame-stabilizing effect becomes minor, thereby causing a normal heat-loss-induced self-excitation with O(0.01 Hz). Air-coflowing can suppress the normal heat-loss-induced self-excitation through increase of a Peclet number; meanwhile it can enhance the normal heat-lossinduced self-excitation through reducing fuel concentration gradient and thereby decreasing the reaction rate of trailing diffusion flame. Below the critical lift-off height. the effect of flame stabilization is superior, leading to a coflow-modulated heat-loss-induced self-excitation with O(0.001 Hz). Over the critical lift-off height, the effect of reducing fuel concentration gradient is pronounced, so that the normal heat-loss-induced self-excitation is restored. A newly found prompt self-excitation, observed prior to a heat-loss-induced flame blowout, is discussed. Heat-loss-related self-excitations, obtained laminar lifted propane coflow-jet flames diluted with nitrogen, were characterized by the functional dependency of Strouhal number on related parameters. The critical lift-off height was also reasonably characterized by Peclet number and fuel mole fraction.

A Comparative Study Between Diffusive-thermal and Buoyancy-driven Self-excitations in Laminar Free Jet Flames with Applied DC Electric Fields (직류전기장이 인가된 층류제트화염에서 물질 -열 확산과 부력에 의한 진동비교에 관한 연구)

  • Han, Jong-Kyu;Yoon, Sung-Hwan;Park, Jeong;Kwon, Oh-Boong;Kim, Tae-Hyung;Park, Jong-Ho
    • Journal of the Korean Society of Combustion
    • /
    • v.17 no.1
    • /
    • pp.37-47
    • /
    • 2012
  • Experimental study on comparison of diffusive-thermal self-excitation with buoyancy-driven one due to accumulation of partially premixed, preheated mixture in front of edge flame was conducted in horizontally and vertically injected laminar free-jet flames with an applied DC electric field of -10 kV. The application of horizontal injection method with the DC electric field to jet flames was experimentally designed to suppress heat-loss-induced self-excitation and thereby to highlight the definite difference between both diffusive-thermal and buoyancy-driven self-excitations with the same order of O(1.0 Hz), in that diffusive-thermal self-excitation has not been so far found experimentally in laminar jet flames. Flame stability maps in vertically and horizontally injected jet flames are presented. The distinct modes of individual self-excitation are shown to be well described by their own phase diagrams. The results show that buoyancy-driven self-excitation due to the accumulation of partially premixed, preheated mixtures in front of edge flame is branched from the buoyancy-induced self-excitation with O(10 Hz) due to a flame flicker. Once the buoyancy-driven self-excitation appears, it suppresses buoyancy-induced as well as diffusive-thermal self-excitation. The key characteristics for individual self-excitation are discussed and their functional dependencies of Strouhal number upon related physical parameters are also presented.

A Combustion Characteristics of Attached Jet Flame under the Regular Oscillation (규칙적인 진동 하에서 노즐 부착된 제트화염의 연소특성)

  • Kim, Dae-Won;Lee, Kee-Man
    • Fire Science and Engineering
    • /
    • v.23 no.1
    • /
    • pp.55-62
    • /
    • 2009
  • A general combustion characteristics of forcing nonpremixed jet in laminar flow rates have been conducted experimentally to investigate the effect of forcing amplitude with the resonant frequency of fuel tube. There are two patterns of the flame lift-off feature according to the velocity increasing; one has the decreasing values of forcing amplitude on the lift-off occurrence when a fuel exit velocity is increasing, while the other has the increasing values. These mean that there are the different mechanisms in the lift-off stability of forced jet diffusion flame. Especially, the characteristics of attached jet flame regime are concentrically observed with flame lengths, shapes, flow response and velocity profiles at the nozzle exit as the central figure. The notable observations are that the flame enlogation, in-homing flame and the occurrence of a vortical motion turnabout have happened according to the increase of forcing amplitude. It is understood by the velocity measurements and visualization methods that these phenomena have been relevance to an entrainment of surrounding oxygen into the fuel nozzle as the negative part of the fluctuating velocity has begun at the inner part of the fuel nozzle.

On Numerical Modeling of Kerosene/Liquid Oxygen Coaxial Swirl Injectors (케로신/액체산소 동축 와류형 분사기에 대한 수치해석 모델 고찰)

  • Kim, Seong-Ku;Choi, Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.729-732
    • /
    • 2010
  • The present study has been motivated by the development of a reliable numerical methodology for simulation of kerosene/LOx coaxial swirl injectors. To deal with thermodynamic non-ideality and anomalies of transport properties pronounced at supercritical pressures, a set of subroutine libraries has been constructed based on the cubic equations of state, and applied to an existing flamelet analysis code. For computational efficiency, two-dimensional axisymmetric RANS formulation with swirl was adopted and validated successfully against an isothermal coaxial swirling jet. For the actual problem with high pressure combustion, however, numerical results show that the RANS models yield excessive production of turbulence probably due to high density gradient magnitude in the vicinity of mixing layer of swirling film flow, and imply strongly further improvement of the turbulence models.

  • PDF

Effect of Ignition Delay Time on Autoignited Laminar Lifted Flames (자발화된 층류 부상화염에 대한 점화지연시간의 영향)

  • Choi, Byung-Chul
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.10
    • /
    • pp.1025-1031
    • /
    • 2011
  • Autoignition characteristic is an important parameter for designing diesel or PCCI engines. In particular, diesel spray flames are lifted from the nozzle and the initial flame is formed by an autoignition phenomenon. The lifted nature of diesel spray flames influences soot formation, since air will be entrained into the spray core by the entrainment of air between the nozzle region and the lifted flame base. The objective of the present study was to identify the effect of heat loss on the ignition delay time by adopting a coflow jet as a model problem. Methane ($CH_4$), ethylene ($C_2H_4$), ethane ($C_2H_6$), propene ($C_3H_6$), propane ($C_3H_8$), and normal butane (n-$C_4H_{10}$) fuels were injected into high temperature air, and the liftoff height was measured experimentally. As the result, a correlation was determined between the liftoff height of the autoignited lifted flame and the ignition delay time considering the heat loss to the atmosphere.

Effect of AC Electric Fields on Flow Instability in Laminar Jets (층류제트유동 불안정성에 미치는 교류 전기장 효과)

  • Kim, Gyeong Taek;Lee, Won June;Cha, Min Suk;Park, Jeong;Chung, Suk Ho;Kwon, Oh Boong;Kim, Min Kuk;Lee, Sang Min
    • Journal of the Korean Society of Combustion
    • /
    • v.21 no.3
    • /
    • pp.1-6
    • /
    • 2016
  • The effect of applied electric fields on jet flow instability was investigated experimentally by varying the direct current (DC) voltage and the alternating current (AC) frequency and voltage applied to a jet nozzle. We aimed to elucidate the origin of the occurrence of twin-lifted jet flames in laminar jet flow configuration, which occur when AC electric fields are applied. The results indicate that a twin-lifted jet flames originates from cold jet instability, caused by interactions between negative ions in the jet flow via electron attachment as $O_2+e{\rightarrow}O_2{^-}$ when AC electric fields are applied. This was confirmed by experiments in which a variety of gaseous jets were ejected from a nozzle to which DC voltages and AC frequencies and voltages were applied, with ambient air between two deflection plates connected to a DC power source. Experiments in which jet flows of several gases were ejected from a nozzle and AC electric fields were applied in coflow-nitrogen provided further evidence. The flow instability occurred only for oxygen and air jets. Additionally, jet instability occurred when the applied frequency was less than 80 Hz, corresponding to the characteristic collision response time. The effect of AC electric fields on the overall structure of the jet flows is also reported. Based on these results, we propose a mechanism to reduce jet flow instability when AC electric fields are applied to the nozzle.