• Title/Summary/Keyword: 층간 응력 해석

Search Result 63, Processing Time 0.022 seconds

Seismic Performance Preliminary Evaluation Method of Reinforced Concrete Apartments with Bearing Wall system (기존 철근콘크리트 벽식 공동주택의 내진 성능 예비 평가법에 관한 연구)

  • Chung, Lan;Woo, Sung-Sik;Choi, Ki-Young;Park, Tae-Won
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.3
    • /
    • pp.293-300
    • /
    • 2007
  • In Korea, the seismic design regulations was established since 1988 about regularity scale of structures. However, It was not established about seismic performance and evaluation method as the most existing buildings was constructed before Earthquake-Resistant Design(1988). In this study, for model structures which are 4 units of non-seismic designed apartment and 3 units of seismic designed in Korea performed seismic performance evaluation by suggested KISTC (2004). And the result compare to evaluate Capacity Spectrum Method by using MIDAS Gen and SDS. As a result, we observed that suggested KISTC's method have overestimated for shear stress and drift index. The purpose of this study provides most conformity seismic performance evaluation process and the appropriate method of calculating the seismic performance index in Korea.

The Study on the Placements of Brace Members Using Optimum Seismic Design of Steel Frames (강골조 구조물의 내진 최적설계에 의한 브레이스 부재 배치에 관한 연구)

  • Kim, Ki-Wook;Park, Moon-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.9 no.1
    • /
    • pp.111-119
    • /
    • 2005
  • This study presents continuous and discrete optimum design algorithm and computer programs for unbraced and braced steel frame structures under earthquake loads. The program, which is avaliable to perform structural analysis and optimum design, continuous and discrete, simultaneously is developed. And the program adopts various braced types, Untraced, Z-braced(V), Z-braced(inverse-V), X-braced(A), X-braced(B), X-braced(C) and K-braced, in steel structures with static loads and seismic effects. The objectives in this optimization are to minimize the total weight of steel, and design variables, based on the ultimate strength requirements of AISC-ASD specifications, the serviceability requirements and allowable story drift requirements of ATC-3-06, and various constraints. The purpose is to present proper braced type for seismic effects by comparing and analysing results of various cases.

Analysis of Shear Force in Perimeter Column due to Outrigger Wall in a Tall Building (고층 건물의 아웃리거 벽체에 의한 외부 기둥의 전단력 해석)

  • Huang, Yi-Tao;Kim, Han-Soo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.31 no.6
    • /
    • pp.293-299
    • /
    • 2018
  • Steel truss outriggers can be replaced by reinforced concrete walls to control the lateral drift of tall buildings. When reinforced concrete outrigger walls are connected to perimeter columns, not only axial forces but also shear forces and moments can be induced on the perimeter columns. In this study, the shear force of the perimeter column due to the rotation of the outer edge of the outrigger wall is derived as analytic equations and the result is compared with the finite element analysis result. In the finite element analysis, the effects of connecting beams at each floor and the effect of modeling shear walls and outriggers with beam element and plane stress element was analyzed. The effect of the connecting beam was almost negligible and the plane stress element was determined to have greater stiffness than the beam element. The inter-story rotation and the shear force of the perimeter column due to the rotation of the outer edge of the outrigger wall was considerably smaller than the allowable value. Therefore, even if the outrigger wall made of reinforced concrete is applied to a tall building, it is considered that there is no need to study the shear force and moment induced in the perimeter columns.

Effect of the Inner Pressure on a Hybrid Composite Flywheel Retor (하이브리드 복합재 플라이휠 로터에 작용하는 내압의 효과)

  • Oh Je-Hoon;Han Sang-Chul;Kim Myung-Hoon;Ha Sung Kyu
    • Composites Research
    • /
    • v.18 no.1
    • /
    • pp.45-54
    • /
    • 2005
  • The delamination in the filament-wound composite flywheel rotor often lowers the performance of the flywheel energy storage system. A conventional ring type hub usually causes tensile stresses on the inner surface of the composite rotor, resulting in lowering the maximum rotational speed of the rotor. In this work, the stress and strain distributions within a hybrid composite rotor were derived from the two-dimensional governing equation with the specified boundary conditions, and an optimum pressure at the inner surface of the rotor was proposed to minimize the strength ratio and maximize the storage energy. A split type hub was introduced to apply the calculated optimum pressure at the inner surface, and a spin test was performed up to 40,000 rpm to demonstrate the performance of the split type hub with radial and circumferential strains measured using a wireless telemetry system. From the analysis and the test, it was found that the split type hub successfully generates a compressive pressure on the inner surface of the rotor, which can enhance the performance of the composite rotor by lowering the strength ratio within the rotor.

Failure Pressure Prediction of Composite T-Joint for Hydrodynamic Ram Test (수압램 시험을 위한 복합재 T-Joint의 파손 압력 예측)

  • Kim, Dong-Geon;Go, Eun-Su;Kim, In-Gul;Woo, Kyung-Sik;Kim, Jong-Heon
    • Composites Research
    • /
    • v.29 no.2
    • /
    • pp.53-59
    • /
    • 2016
  • Aircraft wing structure is used as a fuel tank containing the fluid. Fuel tank and joint parts are consists of composite structure. Hydrodynamic Ram(HRAM) effect occurs when the high speed object pass through the aircraft wing or explosion and the high pressure are generated in the fuel tank by HRAM effect. High pressure can cause failure of the fuel tank and the joint parts as well as the aircraft wing structure. To ensure the aircraft survivability design, we shall examine the behavior of the joint parts in HRAM effect. In this study, static tensile tests were conducted on four kind of the composite T-Joints. The failure behavior of the composite T-joint was examined by strain gauges and high speed camera. We examine the validity of the Finite Element Modeling by comparing the results of FEA and static tensile tests. The failure stresses and failure pressure of the composite T-Joint were calculated by FEA.

Connection Performance of Steel Moment Frame with Out-of-Plane Beam Skew (면외방향 어긋난 보를 갖는 철골모멘트골조의 접합부 성능)

  • Hong, Jong-Kook
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.2
    • /
    • pp.84-91
    • /
    • 2022
  • This study investigated the behavior of out-of-plane skewed moment connections that were designed as IMFs, as per the Korean standards. A total of 14 finite element models were constructed with the consideration of two types (single- and double-sided connections) and four levels of skew angle (0°, 10°, 20°, and 30°). The results indicated that the skewed connections considered in this study met the acceptance criteria for IMFs given by the codes. However, the load-carrying capacities of skewed connections were decreased as the skew angle increased. For the connection with a skew angle of 30°, the peak load was noted to be 13% less and the energy dissipation capacity could be 26% less than that of non-skewed connection. In addition, because of the skewed nature, the stress distribution in the skewed beam flange near the connection was asymmetric and the stresses were concentrated on the beam inner flange. Column twisting induced by the skewed configuration was very small and negligible in the beam and column combination considered in this study.

A Numerical Study on the Apartment Structure Using Crossed Wide Girder (교차형 와이드 거더를 이용한 아파트구조의 수치해석적 연구)

  • Park, Jung-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.8 no.5
    • /
    • pp.1186-1191
    • /
    • 2007
  • The study uses the crossed wide girder(waffle slab type) in apartment structural system comparing with existing shear wall system. The crossed wide girder will be able to secure the span of the longest which is possible with minimum slab thickness by not increasing the height. The research sees continuity arranges the crossed wide girder in schedule interval following the stress distribution. Namely, it is to make the interior space with the space without column and wall in the minimum height. In order to check the numerical value of this study which it interpreted the ductile frame system due to the crossed wide girder and existing shear wall system used the Midas Gen is a program which 3-dimension laterial force designs are possible. Analysis results, the crossed wide girder system is not disadvantageously laterial drift, drift ratio and deflection of slab compares with existing shear wall system. Also the whole concrete amount is similar existing shear wall system. The crossed wide girder is advantage which secure a architectal variability.

  • PDF

Modeling of Friction Characteristic Between Concrete Pavement Slab and Subbase (콘크리트 포장 슬래브와 보조기층 간 마찰특성 모형화)

  • Lim, Jin-Sun;Son, Suk-Chul;Liu, Ju-Ho;Jeong, Jin-Hoon
    • International Journal of Highway Engineering
    • /
    • v.12 no.4
    • /
    • pp.211-218
    • /
    • 2010
  • Volume of concrete slab changes by temperature and moisture effects. At that time, tensile stress develops because the slab volume change is restrained by friction resistance between the slab and subbase, and then crack occurs occasionally. Accordingly, researchers have made efforts to figure out the friction characteristics between the slab and subbase by performing push-off tests. Lately, researches to analyze concrete pavement behavior by the friction characteristics have been performed by finite element method. In this study, The friction characteristics between the slab and subbase were investigated based on the friction test results for lean concrete, aggregate, and asphalt subase widely used in Korean concrete pavements. The energy method bilinearizing relation between nonlinear friction resistance and displacement were suggested. The friction test was modeled by 3-D finite element program, ABAQUS, and the model was verified by comparing the analyzed results to the test results. The bilinear model developed by the energy method was validated by comparing analysis results obtained by using the nonlinear and bilinear friction resistance displacement relation as input data. A typical Korean concrete pavement was modeled by ABAQUS and EverFE and analyzed results were compared to evaluate applicability of the bilinear model.

Study on the Durability of Composite Tilting Pad Journal Bearing for Turbo Compressor System under Oil-cut Situation (터보 컴프레셔용 복합재료 틸팅 패드 저널 베어링의 오일 공급 중단 상황에서의 내구성 연구)

  • Choe, Kang-Yeong;Jung, Min-Hye;You, Jun-Il;Song, Seung-A;Kim, Seong-Su
    • Composites Research
    • /
    • v.29 no.3
    • /
    • pp.111-116
    • /
    • 2016
  • The tilting pad journal bearing for the turbo compressor application has a role to support high speed and heavy loading rotor. White metal has been widely used for the bearing material but the conventional bearing is immediately suspended and induces serious serious damage to the rotor under the unexpected oil cut situation or the insufficient oil film formation. The carbon fiber reinforced composite having high specific stiffness, specific strength and excellent tribological characteristics can solve these seizure problems. In this work, the study on the durability of high thermal resistance carbon fiber/epoxy composite tilting pad journal bearing under oil cut situation was conducted. The material properties of the composite materials including tensile, compressive and interlaminar properties were measured at room and high temperature of oil cut situation. To investigate the possibility of failure of composite tilting pad journal bearing under oil cut situation, the stress distribution of the composite bearing was analyzed via finite element analysis and the Tsai-Wu Failure index was calculated. To verify the failure analysis results, the oil cut tests for the composite tilting pad journal bearing were conducted using industrial test bench.

Functionally Gradient Materials (FGMs) for Improved Thermo-mechanical Properties (열.기계적 특성 향상을 위한 경사기능 재료 (FGM))

  • 박성용;김진홍;김문철;박찬경
    • Journal of Powder Materials
    • /
    • v.11 no.1
    • /
    • pp.8-15
    • /
    • 2004
  • The basic concept of functionally gradient materials (FGM) is to fabricate materials type having possibilities of applications in various fields by changing their intrinsic properties with continuous gradient. The present communication has reviewed the developments and applications of various FGMs designed for improved thermo-mechanical properties, in which the thermal protective and wear resistant materials are especially focused. Effects of thermo-mechanical properties and limits of FGMs designed for high temperature applications were mainly understood in terms of residual stress evolved from the design and fabrication. In addition, FGMs applied in structural parts were also introduced and discussed in terms of typical fabrication method for FGMs.