• Title/Summary/Keyword: 층간분리 형상계수, $f_s$

Search Result 3, Processing Time 0.017 seconds

The Relationship Between Delamination Element and Delamination Growth (층간분리 요소와 층간분리 성장의 관계)

  • 송삼홍;김철웅;홍정화;김태수;황진우
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.04a
    • /
    • pp.113-116
    • /
    • 2003
  • The investigation of delamination growth behavior in hybrid composite material such as FRMLs should be considered delamination growth rate, dA_D/da$ using the delamination shape factor, $f_S$ instead of traditional fracture mechanics parameters. The main objective of this study is to evaluate the relationship between delamination element (i. e. delamination width, b, delamination contour, c, delamination shape factor, $f_S$ and delamination growth rate, dA_D/da$) and delamination growth in FRMLs under cyclic bending moment. The delamination shape formed along the fatigue crack between aluminum layer and glass fiber/epoxy layer are measured by scanning method. The details of study are as follow : ⅰ) Relationship between crack length, a and delamination width, b. ⅱ) Variation of delamination growth rate, dA_D/da$ was attendant on delamination shape factors, $f_{S1}$, $f_{S2}$, $f_{S3}$. The test result indicated the delamination growth behavior depends in delamination element such as delamination width, b, delamination shape factors, $f_{S1}$, $f_{S2}$, $f_{S3}$.

  • PDF

The Effect of Delamination Shape Factor, $f_s$ on the Delamination Growth Rate, $dA_D/da$ in FRMLs (층간분리 형상계수($F_s$)가 FRMLs의 층간분리 성장률($dA_D/da$)에 미치는 영향)

  • 송삼홍;이원평;김광래;김철웅
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.04a
    • /
    • pp.398-404
    • /
    • 2003
  • Most previous researches for the hybrid composite materials such as FRMLs(Al/AFRP, Al/GFRP) have evaluated the fatigue delamination behavior using the traditional fracture mechanism. However, most previous researches have not generally been firmed yet. Because delamination growth behavior in hybrid composite should be consider delamination growth rate, $dA_D$/da using the delamination shape factors, fs instead of traditional fracture mechanic parameters. The major purpose of this study was to evaluate the relationship between delamination shape factor, fs and delamination growth rate, $dA_D$ . And a propose parameter on the delamination aspect ratio, b/a. The details of the study are as follow : 1) Relationship between crack length, a and delamination width,b. 2) Relationship between delamination aspect ration, b/a and delamination area rate,($(A_D)_{N}(A_D)_{ALL}$. 3) Variation of delamination growth rate, $dA_D/da$ was attendant on delamination shape factors, $fs_1$, $fs_2$, $fs_3$. The test results indicated the delamination growth rate depends on delamination shape factors.

  • PDF

Evaluation of Delamination Behavior in Hybrid Composite Using the Crack Length and the Delamination Width (균열길이와 층간분리 폭의 관계를 이용한 하이브리드 복합재의 층간분리 거동 평가)

  • 송삼홍;김철웅
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.1
    • /
    • pp.55-62
    • /
    • 2004
  • Although the previous researches evaluated the fatigue behavior of glass fiber/epoxy laminates using the traditional fracture mechanism, their researches were not sufficient to do it: the damage zone of glass fiber/epoxy laminates was occurred at the delamination zone instead of the crack-metallic damages. Thus, previous researches were not applicable to the fatigue behavior of glass fiber/epoxy laminates. The major purpose of this study was to evaluate delamination behavior using the relationship between crack length and delamination width in hybrid composite material such as Al/GFRP laminate. The details of investigation were as follows : 1) Relationship between crack length and delamination width, 2) Relationship between delamination aspect ratio and delamination area rate, 3) Variation of delamination growth rate is attendant on delamination shape factors. The test results indicated that the delamination growth rate depends on delamination width delamination aspect ratio and delamination shape factors.