• Title/Summary/Keyword: 측지선 거리

Search Result 5, Processing Time 0.024 seconds

The Accuracy Analysis of Methods to solve the Geodetic Inverse Problem (측지 역 문제 해석기법의 정확도 분석)

  • Lee, Yong-Chang
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.29 no.4
    • /
    • pp.329-341
    • /
    • 2011
  • The object of this paper is to compare the accuracy and the characteristic of various methods of solving the geodetic inverse problem for the geodesic lines which be in the standard case and special cases(antipodal, near antipodal, equatorial, and near equatorial situation) on the WGS84 reference ellipsoid. For this, the various algorithms (classical and recent solutions) to deal with the geodetic inverse problem are examined, and are programmed in order to evaluate the calculation ability of each method for the precise geodesic determination. The main factors of geodetic inverse problem, the distance and the forward azimuths between two points on the sphere(or ellipsoid) are determined by the 18 kinds of methods for the geodetic inverse solutions. After then, the results from the 17 kinds of methods in the both standard and special cases are compared with those from the Karney method as a reference. When judging these comparison, in case of the standard geodesics whose length do not exceed 100km, all of the methods show the almost same ability to Karney method. Whereas to the geodesics is longer than 4,000km, only two methods (Vincenty and Pittman) show the similar ability to the Karney method. In the cases of special geodesics, all methods except the Modified Vincenty method was not proper to solve the geodetic inverse problem through the comparison with Karney method. Therefore, it is needed to modify and compensate the algorithm of each methods by examining the various behaviors of geodesics on the special regions.

A Novel Method for Moving Object Tracking using Covariance Matrix and Riemannian Metric (공분산 행렬과 리만 측도를 이용한 이동물체 추적 방법)

  • Lee, Geum-Boon;Cho, Beom-Joon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.2
    • /
    • pp.364-370
    • /
    • 2011
  • This paper propose a novel method for tracking moving object based on covariance matrix and Riemannian Manifolds. With image backgrounds continuously changed, we use the covariance matrices to extract features for tracking nonrigid object undergoing transformation and deformation. The covariance matrix can make fusion of different types of features and has its small dimension, therefore we enable to handle the spatial and statistical properties as well as the component correlation. The proposed method can estimate the position of the moving object by employing the covariance matrix of object region as a feature vector and comparing the candidate regions. Rimannian Geometry is efficiently adapted to object deformation and change of shape and improve the accuracy by using geodesic distance to predict the estimated position with the minimum distance. The experimental results have shown that the proposed method correctly tracked the moving object.

Development of the Process of Coordinate Transformation of Local Datum Cadastral Map to the World Geodetic System - Using Adjusted Coordinate - (지적도면의 세계측지계 좌표변환 프로세스에 대한 연구 - 조정좌표의 활용을 통해서 -)

  • Yang, Chul Soo
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.32 no.spc4_2
    • /
    • pp.401-412
    • /
    • 2014
  • This study is purposed on showing an effective process for coordinate transformation of cadastral maps, based on the local datum, in the World Geodetic System (WGS) for Cadastral Reform Project (CRP). The process follows three steps: coordinate adjustment, datum transformation and distortion modeling. The first procedure is that point coordinates on local datum has to be adjusted by those GPS observed point-to-point distances, using trilateration. Secondly, the adjusted coordinates need to be transformed to WGS by applying the Affine model, while the verification of the methodology is implemented under numerical experiments. To conduct this procedure, 195 points in the same coordinate origins in Seoul and 61 points in several different origins in Incheon are used in the estimation. As a result, there are less than 2cm coordinate differences between transformed coordinates and measured ones at everywhere. Also, it is remarkable that the transformation does not depend on either of the particular common points or the sizes of computed region. Therefore, this suggested methodology is expected to easily provide identifications and corrections for points-deviations for improved quality of the cadastral map by distortion modeling through CRP.

A Comparison of the Algorithm between Korea and Japan in Maritime Boundary Delimitation (해양경계획선 알고리즘에 관한 연구)

  • Kim Byung-Guk;Jin Hai-Ming;Kim Hyung-Su
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.23 no.2
    • /
    • pp.211-217
    • /
    • 2005
  • The general rule of boundary delimitation is the principle of equidistance. The principle of equidistance is a method that determine boundary delimitation from the fixed distant of baseline or basepoint. But there is no artificial and natural object in the sea to determine boundary. And the principle of equidistant can't be applied in every cases, because of the local characteristic of ground. In this paper, we suggest Three-Point Algorithm which is effective algorithm for maritime boundary delimitation. And the main objective of this study is to get capability of maritime boundary delimitation technique.

External Gravity Field in the Korean Peninsula Area (한반도 지역에서의 상층중력장)

  • Jung, Ae Young;Choi, Kwang-Sun;Lee, Young-Cheol;Lee, Jung Mo
    • Economic and Environmental Geology
    • /
    • v.48 no.6
    • /
    • pp.451-465
    • /
    • 2015
  • The free-air anomalies are computed using a data set from various types of gravity measurements in the Korean Peninsula area. The gravity values extracted from the Earth Gravitational Model 2008 are used in the surrounding region. The upward continuation technique suggested by Dragomir is used in the computation of the external free-air anomalies at various altitudes. The integration radius 10 times the altitude is used in order to keep the accuracy of results and computational resources. The direct geodesic formula developed by Bowring is employed in integration. At the 1-km altitude, the free-air anomalies vary from -41.315 to 189.327 mgal with the standard deviation of 22.612 mgal. At the 3-km altitude, they vary from -36.478 to 156.209 mgal with the standard deviation of 20.641 mgal. At the 1,000-km altitude, they vary from 3.170 to 5.864 mgal with the standard deviation of 0.670 mgal. The predicted free-air anomalies at 3-km altitude are compared to the published free-air anomalies reduced from the airborne gravity measurements at the same altitude. The rms difference is 3.88 mgal. Considering the reported 2.21-mgal airborne gravity cross-over accuracy, this rms difference is not serious. Possible causes in the difference appear to be external free-air anomaly simulation errors in this work and/or the gravity reduction errors of the other. The external gravity field is predicted by adding the external free-air anomaly to the normal gravity computed using the closed form formula for the gravity above and below the surface of the ellipsoid. The predicted external gravity field in this work is expected to reasonably present the real external gravity field. This work seems to be the first structured research on the external free-air anomaly in the Korean Peninsula area, and the external gravity field can be used to improve the accuracy of the inertial navigation system.