• Title/Summary/Keyword: 측정오차

Search Result 4,662, Processing Time 0.046 seconds

재장전노심의 노물리시험중 제어봉제어능 측정방법들에 대한 통계적 추론

  • 정대욱;구본현
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05a
    • /
    • pp.80-87
    • /
    • 1996
  • 국내 가동중원전의 노물리 시험중 제어봉제어능 측정시 적용되는 측정방법들에 대해 실제 측정결과를 이용해서 통계적 분석 및 추론을 수행하였다. 1988년부터 현재까지 약 8년간 모든 발전소에서 행한 측정결과에 대해 통계적 분석 및 주요 시험변수들과의 상관관계를 분석한 결과, 다음과 같은 결론이 도출되었다. 제어봉 제어능 측정결과는 전반적으로 측정치가 예측치에 비해 작은 경향을 보이고 있다. 붕산희석법은 측정오차가 가장 작았고 임의성을 가지며, 노심의 붕산농도와 상관관계가 있다. Framatome방식의 제어봉교환법은 비교적 측정오차가 크나, 시험변수들과의 상관 관계는 가장 미약하다. CE 방식의 제어봉교환법은 Swap 방법 중에는 측정오차가 가장 작고 임의성이 있으나, 붕산농도 및 기준제어군 제어능 측정오차의 크기와 강한 상관관계를 갖는다. Westinghouse 방식의 제어봉교환법은 가장 측정오차가 크며 대부분의 측정결과에서 측정치가 작게 편향되어 있다. 그리고 시험제어군의 제어능이 작을수록 측정오차가 커지는 강한 상관관계가 있으며, 기준제어군 제어능 측정오차의 크기와도 상관관계가 있다.

  • PDF

A study on the calibration of rotary table with NC machine (NC 공작기계의 Rotary Table 오차 측정 및 보상에 관한 연구)

  • 정세용;서석환;이응석
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.636-642
    • /
    • 1996
  • 본 연구는 4축 또는 5축 NC 공작기계에 사용되는 Rotary Table의 오차를 측정하고 이를 보정하기 위한 연구이다. 먼저 일반적인 Rotary Table에 대한 오차모델이 설정되었으며, Rotary Table에서 존재하는 6가지의 오차를 각각 측정하였다. 측정방법은 3개의 길이오차는 1 개의 정밀볼(Master ball)과 3개의 LVDT, 3개의 각도 오차는 6각 폴리곤과 Autocollimator를 사용하여 측정하였다. 측정된 오차 성분들은 오차모델을 이용하여 보상치를 계산하였으며, 이 값은 추후 원래의 측정오차와 비교하는 방법으로 모델의 정확성을 검증할 것이다. NC 공작기계상에서 Rotary Table의 실제 보상 실험을 위하여 30$^{\circ}$간격으로 정밀한 볼이 장착된 볼-테이블을 설계하였다.

  • PDF

Development of Geometric Error Measurement System for Machine tool Guideways Using Laser-Photo Diode (레이저 및 광전소자를 이용한 공작기계 가이드 운동오차 측정시스템 개발)

  • 박희재
    • Journal of the KSME
    • /
    • v.34 no.3
    • /
    • pp.168-176
    • /
    • 1994
  • 축 이송운동의 오차를 측정할 수 있는 광전소자 측정시스템이 구현되었으며, 결론은 다음과 같다. 1) 광전소자와 레이저광원을 이용하여 축이송시에 발생하는 5개의 운동오차를 동시에 검출하는 측정방법이 개발되었으며, 이때의 정밀도는 마이크로미터오더이다. 2)광전소자에 대한 2차원 칼리브레이션이 수행되었으며, 비선형성을 고려할 때 더욱 정밀한 측 정값을 얻을 수 있었다. 3) 레이저간섭기 등에 의해서 측정이 어려운 롤(roll)오차의 측정방법이 구현되었으며, 이때 빔 분리기의 오차를 칼리브레이션할 때, 정밀한 측정값이 얻어질 수 있었다. 4)광전소자측정시스템을 마이크로 컴퓨터와 연계함으로써, 종래의 측정방법보다 매우 빠르며, 정밀한 측정시스템이 구현되었다.

  • PDF

3-Dimensional Error Calibration of CMMs Using a Hole-Plate Artefaet (홀-플레이트(Hole-Plate)를 이용한 3차원좌표측정기의 공간오차 측정)

  • ;;M. Burdekin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.4
    • /
    • pp.67-74
    • /
    • 1996
  • 3차원좌표측정기(Coordinate Measuring Machine)의 공간오차(Volumetric error)의 측정을 위하여 홀-플레이트(Hole-Plate)를 이용하는 방법이 연구되었다. 티타늄 또는 세라믹으로 제작되는 홀-플레이트의 설계 예를 보였다. 홀-플레이트의 측정홀 숫자와 진원도(Roundness)의 영향이 연구되었으며, 또한 홀-플레이트의 설치시 발생하는 오차도 검토되었다. 3차원좌표측정기의 공간오차성분 모두를 별도로 측정하는 방법이 제안되었다. 홀-플레이트를 이용 2차원 및 3차원 공간의 길이 오차를 직접적으로 측정하는 방법도 소개되었다.

  • PDF

Measurement of Rail Profile Errors for Estimating the Volumetric Error in 3-axis Machines (3축 가공장비의 공간오차 예측을 위한 레일형상오차 측정)

  • Khim, G.;Oh, J.S.;Oh, J.;Jeong, J.H.;Park, C.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2012.05a
    • /
    • pp.839-840
    • /
    • 2012
  • 본 논문에서는 3 축 기계장비의 공간오차를 예측하기 위한 사전 단계로 각 축에 대하여 레일형상오차를 측정하였다. 전용 측정지그를 설계/제작하여 이 지그가 이동함에 따라 혼합축차이점법을 이용하여 레일형상오차를 측정하였다. 레일형상오차로부터 테이블 운동오차를 예측하고, 이와 더불어 각 축 사이의 직각도 오차를 측정한 후 이로부터 최종적으로 3 축 장비에 대한 공간오차를 평가할 예정이다. 예측된 공간오차는 실제 레이저를 이용한 공간오차 측정방법을 이용하여 검증할 예정이다.

  • PDF

Assessment of Uncertainty for Discharge Measurement using Velocity-Area method (유속-면적법으로 측정된 유량에 대한 측정 불확도 평가)

  • Kim, Jongmin;Kim, Dongsu;Kim, Seojun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.104-104
    • /
    • 2016
  • 소규모 하천에서의 평수기 유량 측정은 일반적으로 지점식 초음파 유속계, 프로펠러 유속계 등을 활용해 도섭법으로 측정된 유속 측정성과를 기반하여 유속-면적법으로 산정된다. 유속-면적법으로 측정된 유량 측정 성과는 횡방향 측선의 수, 수심방향 측점의 수, 측정 시간, 수심 등 제반 측정 인자에 의해 영향을 받고 유량 불확도는 각 인자 별 오차에 영향을 받는다. ISO 748 (2007)과 ISO 1088 (2007)은 유속-면적법 적용방법, 현장 측정 가이드라인, 불확도 인자 별 적용 요건에 따른 오차, 최종 유량 불확도 산정 기법을 제시하였다. 따라서, 국내외 유량조사 기관에서는 유속면적법을 적용할 경우, ISO에서 제시된 인자 별 오차 및 유량 불확도 산정 기법을 기반으로 유량 불확도를 산정해왔다. ISO 748과 1088은 다양한 규모의 실제 하천에서 관측된 자료를 기반으로 횡방향 측선 수, 수심방향 측점 수 (2점법, 3점법 등), 측정 시간 등과 관련된 인자 별 오차를 표로 상세하게 제시하였고 실무에서는 별도 추가 검증없이 사용해 왔다. 그러나, ISO에서 유속-면적법 유량 측정 불확도를 평가하기 위해 사용된 측정자료는 유량을 제어하기 힘들고 유속 측정 상황이 유출 조건 별로 상이한 현장 자료를 기반으로 하였고, 상대적으로 정확도가 낮은 프로펠러유속계를 기반으로 1960년대에 관측된 자료들을 주로 활용하여 도출되었다. 따라서, 본 연구에서는 기존 ISO에서 제시한 유속-면적법에 필요한 인자들의 오차를 정밀 실규모 실험을 통해 재산정하여 기존 ISO 748과 1088에서 제시한 인자별 오차의 적정성을 검증하고자 하였다. 이를 위해 흐름을 안정적으로 통제할 수 있는 건설기술연구원 안동 하천실험센터의 완경사수로(A2)에서 정상상태의 폭 7m, 수심 1m, 유속 약 1m/s의 흐름을 유지한 후, 유속 측정 정확도가 우수한 micro-ADV를 활용하여 공간적으로 매우 정밀하게 유속을 측정하고, 수심은 Total Station을 기반으로 흐름 발생 전에 정밀 측정하였다. 오차 분석 결과, ISO 규정에서 제시한 오차와 본 실험의 결과로 도출된 인자들의 오차는 상당한 차이를 보였다. 따라서, 본 연구 결과로 도출된 유속-면적법의 인자 별 오차는 실험이 수행된 소하천 규모의 하천에서 도섭법으로 산정된 유량의 불확도를 평가할 경우에 활용될 것으로 기대된다.

  • PDF

Positioning Error Measurement and Compensation Using Laser Interferometer (레이저간섭계를 이용한 길이오차 측정 및 보정기술)

  • 박준호
    • Journal of the KSME
    • /
    • v.34 no.3
    • /
    • pp.185-192
    • /
    • 1994
  • 공작기계 및 측정기계 등은 여러 가지 요인에 의해서 오차를 갖게 되지만, 이들이 갖는 계통오 차는 정밀한 측정과 보정알고리즘에 의해 보정이 가능하다. 보정을 위한 측정방법은 여러 가지가 있지만 측정정밀도가 높은 헤트로다인레이저간섭계가 가장 많이 사용되고 잇다. 따라서 이글에 서는 헤트로다인레이저간섭계의 측정원리와 측정방법과 그 응용예를 소개하였다. 헤트로다인레 이저간섭계는 외부광학기를 교체하여 측정 가능한 길이, 각도, 진직도의 측정이 가능하므로 이 들에 대한 원리와 사용방법을 소개하였으며, 실예로 본 연구소에서 사용중인 제품과 개발한 제 품에 적용하여 시스템 오차의 측정방법과 보정방법을 통해 시스템의 정밀도가 향상됨을 보여 주었다. 헤트로다인레이저간섭계를 이용하여 측정시에도 측정기 자체가 갖고 있는 오차요인 즉, 빛의 속도가 일정하지 않고 공기의 습도, 온도 및 압력에 의해 결정되는 파장변화에 의한 오차와 피측정물의 온도변화에 의한 오차 등을 고려하여야 한다. 이런 이유로 측정시에는 센서를 사용 하여 현재 환경에 대한 영향을 자동으로 보상하든지 수동으로 온도 및 파장의 값을 기입하여 보정을 실시하여야 한다.

  • PDF

Analysis of Measuring Error for Particle Size Analysis by Laser Diffraction Spectrometer (입자크기분석을 위한 레이저회절 분광계의 측정오차 분석)

  • Ha, Sang-An;Son, Heui-Jeong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.4
    • /
    • pp.713-722
    • /
    • 2000
  • This study analysed error of measurement and reproducibility for particle size analysis by the laser diffraction spectrometer. Laser diffraction spectrometers has become a very important method of particle size analysis. This measuring method has the advantage of simple operation, good reproducibility and rapid analysis. A feeding and dispersing system have been developed, which allows mass throughputs between 0.1~23 g/min in flowing air and 1.4~35% in flowing liquid. It has been used as a feeder unit for wet and dry particle size analysis from diffraction patterns. Relevant parameters, such as particle shape, particle size, dispersion, flow rate, concentration were analysed for measuring error. And system parameters of instruments for measurement of dynamic processes, eg, measuring time, focal plane, injection pressure drop and dispersion effect by the ultrasonic and mixing of preliminary treatment, were also discussed.

  • PDF

The Error Estimation of Radial Contact Force with a Split Shaft Device for Lip Seals (스플릿트축장치를 이용한 립실의 접촉력 측정 오차 평가)

  • 김완두
    • Tribology and Lubricants
    • /
    • v.12 no.4
    • /
    • pp.13-17
    • /
    • 1996
  • 립실의 중요 설계 변수인 접촉력의 측정에는 스플릿트축장치가 흔히 사용된다. 축과 립실의 간섭량은 두 개 스플릿트축의 간격으로서 조절된다. 두 축을 초기 위치로부터 측정하고자 하는 임의 위치로 이동시킬 때 정확한 원을 이루지 못해 측정되는 접촉력은 오차를 포함되게 된다. 본 연구에서는 작은 간섭량 범위 내에서 접촉력을 이론적으로 예측할 수 있는 수식을 유도하고 측정 오차 값을 예측하였다. 측정된 립실의 접촉력은 측정 간섭량이 초기간섭량과 일치하는 경우 외에는 항상 오차를 포함하고 있음을 밝혔다. 이 오차는 작은 간섭량 범위 내에서 립실의 재료 특성이나 형상에 무관하며, 10% 이내의 측정 오차 유지를 위해서는 측정 간섭량이 초기 간섭량의 68%에서 187% 범위 내에 들어야 함을 확인하였다.

The Position and Heading Estimation System of Mobile Robot Using the Extended Kalman Filter (확장칼만필터를 이용한 이동로봇의 위치와 자세 추정 시스템)

  • Jin, Kwang-Sik;Yun, Tae-Sung
    • Proceedings of the KIEE Conference
    • /
    • 1999.11c
    • /
    • pp.683-686
    • /
    • 1999
  • 이동로봇은 주행성을 가지며 설정된 이동 경로에 따라 목적지까지 자율적으로 이동하기 위해서는 이동로봇의 실제 위치에 대한 정확한 정보가 확보되어야 한다. 정보확보를 위해서 보통 엔코더, 자이로센서, 비젼센서, 레이저 거리등의 센서를 주로 사용한다. 본 연구에서 주행중인 이동로봇의 위치는 상대센서인 엔코더를 통해 측정된 운동변화량과 출발점에서 이동로봇의 위치로부터 자기유도 주행방법에 의해 계산된다. 이들 상대센서는 이동로봇의 실제 이동에 따라 주행거리 및 주행 방향 변화를 항상 측정할 수 있으므로, 전체 주행구간에 걸쳐 이동로봇의 위치를 연속적으로 측정할 수 있다는 장점이 있으나, 상대센서 측정값에 발생된 오차가 위치 평가값이 연속적으로 누적되므로 실제 위치에 대한 오차가 발생하는 단점이 있다. 즉, 바닥의 미끄럼, 요철, 로봇의 요동(Vibration)등 큰 오차의 요인이 된다. 본 연구에서는 위치를 직접 추정하지 않고 엔코드에서 나온 위치오차, Heading 오차, 자체 엔코드오차 그리고, 자이로 오차와 지자기 센서 오차를 Extended Kalman Filter를 통해 추정하여 이 오차를 다시 위치 계산과 Heading에 되돌려 줌으로서 오차를 보정하는 방법을 제시한다.

  • PDF