• Title/Summary/Keyword: 측정기법

Search Result 7,086, Processing Time 0.036 seconds

A Study on the Financial Performance for Nonprofit Performing Arts Organizations: Focusing on American Symphony Orchestras (비영리 공연조직의 재정성과에 관한 연구 - 미국오케스트라를 중심으로 -)

  • Park, Sunmi;Choi, Young-Jun
    • Korean Association of Arts Management
    • /
    • no.50
    • /
    • pp.33-63
    • /
    • 2019
  • This study examines financial performance of nonprofit performing arts organizations to provide concrete suggestions and improve their financial performance so that they can build strategies to continue organizational activities. This study investigates empirical data of IRS 990 tax form of top 73 US orchestras and analyzed GLS pannel. Dependent variables are measured as contributions and ticket sales, and independent variables are measured as economic environment, cultural capital, orchestra characters, government grants, and social capital. Based on the finding from the research, determination of contribution outcomes is positively affected by state employment and orchestra's internal characteristics including age, size and conductor's US nationality, government grants, and volunteer. Ticket sales are affected by employment, education level, orchestra's resources, government grants, and volunteer. However, a size of cultural market negatively influences on financial outcomes and cultural capital doesn't influence on results. Interesting finding is a relationship between volunteers and organizations is vital of their fiscal achievement. This is significant in empirical analysis on nonprofit performing arts organizations from an economic view point, and will contribute on organizations to improve their strategic plan to sustain a business.

A Tracking Method of Same Drug Sales Accounts through Similarity Analysis of Instagram Profiles and Posts

  • Eun-Young Park;Jiyeon Kim;Chang-Hoon Kim
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.2
    • /
    • pp.109-118
    • /
    • 2024
  • With the increasing number of social media users worldwide, cases of social media being abused to perpetrate various crimes are increasing. Specifically, drug distribution through social media is emerging as a serious social problem. Using social media channels, the curiosity of teenagers regarding drugs is stimulated through clever marketing. Further, social media easily facilitates drug purchases due to the high accessibility of drug sellers and consumers. Among various social media platforms, we focused on Instagram, which is the most used social media platform by young adults aged 19 to 24 years in South Korea. We collected four types of information, including profile photos, introductions, posts in the form of images, and posts in the form of texts on Instagram; then, we analyzed the similarity among each type of collected information. The profile photos and posts in the form of image were analyzed for similarity based on the SSIM(Structural Simplicity Index Measure), while introductions and posts in the form of text were analyzed for similarity using Jaccard and Cosine similarity techniques. Through the similarity analysis, the similarity among various accounts for each collected information type was measured, and accounts with similarity above the significance level were determined as the same drug sales account. By performing logistic regression analysis on the aforementioned information types, we confirmed that except posts in image form, profile photos, introductions, and posts in the text form were valid information for tracking the same drug sales account.

Underwater Target Localization Using the Interference Pattern of Broadband Spectrogram Estimated by Three Sensors (3개 센서의 광대역 신호 스펙트로그램에 나타나는 간섭패턴을 이용한 수중 표적의 위치 추정)

  • Kim, Se-Young;Chun, Seung-Yong;Kim, Ki-Man
    • The Journal of the Acoustical Society of Korea
    • /
    • v.26 no.4
    • /
    • pp.173-181
    • /
    • 2007
  • In this paper, we propose a moving target localization algorithm using acoustic spectrograms. A time-versus-frequency spectrogram provide a information of trajectory of the moving target in underwater. For a source at sufficiently long range from a receiver, broadband striation patterns seen in spectrogram represents the mutual interference between modes which reflected by surface and bottom. The slope of the maximum intensity striation is influenced by waveguide invariant parameter ${\beta}$ and distance between target and sensor. When more than two sensors are applied to measure the moving ship-radited noise, the slope and frequency of the maximum intensity striation are depend on distance between target and receiver. We assumed two sensors to fixed point then form a circle of apollonios which set of all points whose distances from two fixed points are in a constant ratio. In case of three sensors are applied, two circle form an intersection point so coordinates of this point can be estimated as a position of target. To evaluates a performance of the proposed localization algorithm, simulation is performed using acoustic propagation program.

Identifying Analog Gauge Needle Objects Based on Image Processing for a Remote Survey of Maritime Autonomous Surface Ships (자율운항선박의 원격검사를 위한 영상처리 기반의 아날로그 게이지 지시바늘 객체의 식별)

  • Hyun-Woo Lee;Jeong-Bin Yim
    • Journal of Navigation and Port Research
    • /
    • v.47 no.6
    • /
    • pp.410-418
    • /
    • 2023
  • Recently, advancements and commercialization in the field of maritime autonomous surface ships (MASS) has rapidly progressed. Concurrently, studies are also underway to develop methods for automatically surveying the condition of various on-board equipment remotely to ensure the navigational safety of MASS. One key issue that has gained prominence is the method to obtain values from analog gauges installed in various equipment through image processing. This approach has the advantage of enabling the non-contact detection of gauge values without modifying or changing already installed or planned equipment, eliminating the need for type approval changes from shipping classifications. The objective of this study was to identify a dynamically changing indicator needle within noisy images of analog gauges. The needle object must be identified because its position significantly affects the accurate reading of gauge values. An analog pressure gauge attached to an emergency fire pump model was used for image capture to identify the needle object. The acquired images were pre-processed through Gaussian filtering, thresholding, and morphological operations. The needle object was then identified through Hough Transform. The experimental results confirmed that the center and object of the indicator needle could be identified in images of noisy analog gauges. The findings suggest that the image processing method applied in this study can be utilized for shape identification in analog gauges installed on ships. This study is expected to be applicable as an image processing method for the automatic remote survey of MASS.

A Fusion Sensor System for Efficient Road Surface Monitorinq on UGV (UGV에서 효율적인 노면 모니터링을 위한 퓨전 센서 시스템 )

  • Seonghwan Ryu;Seoyeon Kim;Jiwoo Shin;Taesik Kim;Jinman Jung
    • Smart Media Journal
    • /
    • v.13 no.3
    • /
    • pp.18-26
    • /
    • 2024
  • Road surface monitoring is essential for maintaining road environment safety through managing risk factors like rutting and crack detection. Using autonomous driving-based UGVs with high-performance 2D laser sensors enables more precise measurements. However, the increased energy consumption of these sensors is limited by constrained battery capacity. In this paper, we propose a fusion sensor system for efficient surface monitoring with UGVs. The proposed system combines color information from cameras and depth information from line laser sensors to accurately detect surface displacement. Furthermore, a dynamic sampling algorithm is applied to control the scanning frequency of line laser sensors based on the detection status of monitoring targets using camera sensors, reducing unnecessary energy consumption. A power consumption model of the fusion sensor system analyzes its energy efficiency considering various crack distributions and sensor characteristics in different mission environments. Performance analysis demonstrates that setting the power consumption of the line laser sensor to twice that of the saving state when in the active state increases power consumption efficiency by 13.3% compared to fixed sampling under the condition of λ=10, µ=10.

Deep Learning-based UWB Distance Measurement for Wireless Power Transfer of Autonomous Vehicles in Indoor Environment (실내환경에서의 자율주행차 무선 전력 전송을 위한 딥러닝 기반 UWB 거리 측정)

  • Hye-Jung Kim;Yong-ju Park;Seung-Jae Han
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.13 no.1
    • /
    • pp.21-30
    • /
    • 2024
  • As the self-driving car market continues to grow, the need for charging infrastructure is growing. However, in the case of a wireless charging system, stability issues are being raised because it requires a large amount of power compared with conventional wired charging. SAE J2954 is a standard for building autonomous vehicle wireless charging infrastructure, and the standard defines a communication method between a vehicle and a power transmission system. SAE J2954 recommends using physical media such as Wi-Fi, Bluetooth, and UWB as a wireless charging communication method for autonomous vehicles to enable communication between the vehicle and the charging pad. In particular, UWB is a suitable solution for indoor and outdoor charging environments because it exhibits robust communication capabilities in indoor environments and is not sensitive to interference. In this standard, the process for building a wireless power transmission system is divided into several stages from the start to the completion of charging. In this study, UWB technology is used as a means of fine alignment, a process in the wireless power transmission system. To determine the applicability to an actual autonomous vehicle wireless power transmission system, experiments were conducted based on distance, and the distance information was collected from UWB. To improve the accuracy of the distance data obtained from UWB, we propose a Single Model and Multi Model that apply machine learning and deep learning techniques to the collected data through a three-step preprocessing process.

Comparative Evaluation of Concrete Compressive Strength According to the Type of Apartment Building Finishing Materials Using Nondestructive Testing (비파괴검사법을 이용한 공동주택 마감재 종류에 따른 콘크리트 압축강도 비교평가)

  • Seong-Uk Hong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.28 no.1
    • /
    • pp.32-38
    • /
    • 2024
  • In the case of apartment building, it is difficult to conduct non-destructive testing due to the actual presence of people and the dust and noise generated during the core test, so inspections are performed each time in the common area and underground parking lot, and the tests are conducted on the finishing material rather than on the concrete surface due to low-cost orders. As the process progresses, poor inspection is inevitable. In addition, the proposed formulas for strength estimation have large fluctuations depending on the differences in test conditions and environments, and even if they show the same measured value, the deviation between each proposed formula is large, making it difficult to accurately estimate strength, making it difficult to use. Accordingly, we would like to select finishing materials mainly used in apartment complexes and compare and evaluate the compressive strength of concrete according to the type of finishing material by using non-destructive testing methods directly on the finishing materials without removing the finishing materials. The reliability evaluation results of the estimated compressive strength of concrete using the ultrasonic velocity method according to the type of finishing material are as follows. The error rate between the estimated compressive strength and compressive strength derived through the ultrasonic velocity method shows a wide range of variation, ranging from 21.83% to 58.89%. The effect of the presence or absence of finishing materials on the estimated compressive strength was found to be insignificant. Accordingly, it is necessary to select more types of finishing materials and study ultrasonic velocity methods according to the presence or absence of finishing materials, and to study estimation techniques that can increase reliability.

Comparison of Ingredients and Antioxidant Activity of Roasted Aerial Parts of Elaeocarpus sylvestris Extracts and Fractions (로스팅 담팔수 지상부 추출물 및 분획물의 성분 분석 및 항산화 활성)

  • Yang Hee Jo;Jae Hyeok Choi;Junil Kim;Taeil Kwak;Woo-Ram Lee
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.50 no.1
    • /
    • pp.49-58
    • /
    • 2024
  • Elaeocarpus sylvestris var. ellipticus is an evergreen tree of the family Elaeocarpaceae, which is a plant that grows naturally only in subtropical regions due to its vulnerability to cold. E. sylvestris has been reported to have flavonoids, coumarins, and polyphenols, and it is reported that these components have antibacterial and antioxidant effects. In this study, a roasting technique was introduced to increase the physiological activity of E. sylvestris, and antioxidant, total phenol, and total flavonoid content were measured after confirming changes in the ingredients of roasted E. sylvestris extracts and fractions. We analyzed the extracts before and after roasting and found an increase in the content of four components (brevifolin, ellagic acid, quercetin, and kaempferol), with the roasted extracts showing better antioxidant activity. The optimal roasting condition was confirmed to have the best antioxidant effect when roasting at 200 ℃ for 30 min, and the total phenol and total flavonoid content were also confirmed to be the best. E. sylvestris extract produced under optimal roasting conditions has been confirmed to exhibit improved antioxidant effects, and it is believed that it can be used as a cosmetic and food material in the future.

Numerical and experimental analysis of aerodynamics and aeroacoustics of high-speed train using compressible Large Eddy Simulation (압축성 대와류모사를 이용한 고속열차의 공력 및 공력소음의 수치적/실험적 분석)

  • Kwongi Lee;Cheolung Cheong;Jaehwan Kim;Minseung Jung
    • The Journal of the Acoustical Society of Korea
    • /
    • v.43 no.1
    • /
    • pp.95-102
    • /
    • 2024
  • Due to technological advances, the cruising speed of high-speed trains is increasing, and aerodynamic noise generated from the flow outside the train has been an important consideration in the design stage. To accurately predict the flow-induced noise, high-resolution generation of sound sources in the near field and low-dissipation of sound propagation in the far field are required. This should be accompanied by a numerical grid and time resolution that can properly consider both temporal and spatial scales for each component of the real high-speed train. To overcome these challenges, this research simultaneously calculates the external flow and acoustic fields of five high-speed train cars of real-scale and at operational running speeds using a threedimensional unsteady Large Eddy Simulation technique. To verify the numerical analysis, the measurements of the wall pressure fluctuation and numerical results are compared. The Ffowcs Williams and Hawking equation is used to predict the acoustic power radiated from the high-speed train. This research is expected to contribute to noise reduction based on the analysis of the aerodynamic noise generation mechanism of high-speed trains.

A study on the variations of water temperature and sonar performance using the empirical orthogonal function scheme in the East Sea of Korea (동해에서 경험직교함수 기법을 이용한 수온과 소나성능 변화 연구)

  • Young-Nam Na;Changbong Cho;Su-Uk Son;Jooyoung Hahn
    • The Journal of the Acoustical Society of Korea
    • /
    • v.43 no.1
    • /
    • pp.1-8
    • /
    • 2024
  • For measuring the performance of passive sonars, we usually consider the maximum Detection Range (DR) under the environment and system parameters in operation. In shallow water, where sound waves inevitably interacts with sea surface or bottom, detection generally maintains up to the maximum range. In deep water, however, sound waves may not interact with sea surface or/and bottom, and thus there may exist shadow zones where sound waves can hardly reach. In this situation, DR alone may not completely define the performance of each sonar. For complete description of sonar performance, we employ the concept 'Robustness Of Detection (ROD)'. In the coastal region of the East Sea, the spatial variations of water masses have close relations with DR and ROD, where the two parameters show reverse spatial variations in general. The spatial and temporal analysis of the temperature by employing the Empirical Orthogonal Function (EOF) shows that the 1-st mode represents typical pattern of seasonal variation and the 2-nd mode represents strength variations of mixed layers and currents. The two modes are estimated to explain about 92 % of the variations. Assuming two types of targets located at the depths of 5 m (shallow) and 100 m (deep), the passive sonar performance (DR) gives high negative correlations (about -0.9) with the first two modes. Most of temporal variations of temperature occur from the surface up to 200 m in the water column so that when we assume a target at 100 m, we can expect detection performance of little seasonal variations with passive sonars below 100 m.