• Title/Summary/Keyword: 측정공구

Search Result 155, Processing Time 0.032 seconds

N2 분위기에서 RF magnetron sputtering 방법으로 증착된 TiN박막의 열처리 온도에 따른 내마모 특성 및 표면구조특성 분석

  • Jang, Bu-Seong;Lee, Chang-Hyeon;Park, Chang-Hwan;Kim, Hwa-Min
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.166.1-166.1
    • /
    • 2016
  • 각종 부품의 내마모성 및 내식성을 개선하기 위해서 금속물질에 나노두께의 보호막층을 입혀 경도를 높이는 표면처리 기술이 개발되고 있다. TiN막은 기계적 경도, 내마모성 및 내식성이 우수하여 수없이 연구되어 왔으며 박막의 두께에 따라 다양한 색상표현이 가능하다는 연구도 진행되고 있다. 이러한 TiN 박막의 연구결과로 높은 경도와 강도를 요하는 절삭공구에 하드 코팅을 이용하여 높은 절삭력으로 고효율적인 작업환경을 조성할 수 있다. 기존에 연구되어 온 TiN박막은 Ar과 N2의 혼합가스 분위기에서 증착된 반면 본 실험에서는 영구자석을 이용한 고밀도 플라즈마로 높은 점착성과 균일한 박막 및 대면적 공정이 가능한 RF-magnetron sputtering방법을 이용하여 N2 분위기에서 TiN박막을 $100^{\circ}C{\sim}400^{\circ}C$의 온도범위에서 $100^{\circ}C$간격으로 열처리 후 증착하여 비교실험을 하였다. 이와 같이 제작된 TiN박막을 XRD(X-ray Diffraction)를 사용하여 결정성을 확인한 결과 온도가 높을수록 (111)방향의 결정성장이 뚜렷하게 나타났으며 그 외 Scratch Test와 HM-220(Micro-vicker's tester)를 사용하여 경도특성을 확인하고 SEM(Scanning Electron Microscope), AFM(Atomic Force Microscope)를 이용하여 박막의 표면형상을 측정하였다. 이러한 측정 결과로 향후에는 높은 내마모성 및 초경도가 요구되는 절삭공구 및 경질표면코팅이 필요한 금속산업분야에 적용이 가능 할 것이라 사료된다.

  • PDF

Study on measuring the low torque on an air tool operating at 100,000 RPM class (100,000 RPM급으로 회전하는 에어공구에서의 저토오크 측정에 관한연구)

  • Kim, Eun-Jong;Cho, Soo-Yong
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.2018-2023
    • /
    • 2003
  • An experiment is conducted for measuring the performance of an air tool, which is operated at 100,000 RPM at the unloaded state with the low torque. An experimental apparatus is developed as the power absorption type dynamometer. Inlet static pressure, flow rate, RPM and force are measured simultaneously. Torque, output power and specific output power are obtained. Those experimental results are compared with the experimental results obtained on a commercial dynamometer. However, no commercial dynamometers are available for measuring the torque above 30,000RPM. In order to use the commercial dynamometer, a reduction gear is applied to the shaft of dynamometer. Torque and power obtained on the commercial dynamometer show 50% lower than those obtained on a power absorption type dynamometer, because the inertia force is added to the air tool rotor for the braking system. Moreover, the starting RPM on the commercial dynamometer is less than 40,000RPM. From the compared results, they show that the power absorption type dynamometer should be applied for measuring the performance of an air tool operating at low torque and high RPM.

  • PDF

Indirect Method for Measurement of Tool Edge Roughness in flat End Mill (평 엔드밀 공구인선부 조도의 간접적인 측정법)

  • Kim, Jeon-Ha;Gang, Myeong-Chang;Kim, Jeong-Seok
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.10
    • /
    • pp.92-98
    • /
    • 2002
  • End mill is an essential tool to generate complex surface in workpiece and it has been developed with various materials and tool shapes. The most important factor to evaluate the performance of end mill is still the wear characteristics of flank face. In addition to the flank wear, the tool edge roughness generated by the chipping is another important factor in aspects of material property and machinability evaluation and affects the quality of machined surface. Up to now, there is no direct method for measurement of tool edge roughness. In this study, the tool edge roughness of flat end mill is indirectly measured along the axial direction of workpiece. The theoretical equation is derived in consideration of tool geometry. Finally, the optimal conditions to measure the tool edge roughness by the proposed method are presented through the theoretical review and experimental identification.

Evaluation of the Effect of Rotating Tool for Friction Stir Welding Al6005-T6 (회전공구 회전속도에 따른 알루미늄 합금 (Al6005-T6)의 마찰교반접합 특성 연구)

  • Choi, Dooho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.11
    • /
    • pp.124-129
    • /
    • 2017
  • In this study, we report characteristics of friction stir welding (FSW) technique applied to Al-6005-T6 extruded sheets, which is a common material for railway car bodies. With the welding speed fixed at 300 mm/min, the revolution per minute (RPM) of the rotating tool was varied from 600 to 1800 RPM, with the aim at evaluating the resultant microstructure and mechanical behaviors. Comparison is also made with the conventional Metal Inert Gas (MIG) welding technique. Unlike MIG, no micro-voids were observed for FSW specimens. Hardness measurement revealed that the increased heat input by increasing RPM results in widened heat affected zone (HAZ) and decreased hardness for HAZ due to grain coarsening. Hardness results for the nugget do no show difference. During tensile tests, specimens fractured at HAZ, and increasing rpm led to decrease of the yield stress and tensile stress for the selected RPM range, which is considered to be due to the grain coarsening for HAZ.

Optimization of Single Point Incremental Forming of Al5052-O Sheet (Al5052-O 판재의 최적 점진성형 연구)

  • Kim, Chan Il;Xiao, Xiao;Do, Van Cuong;Kim, Young Suk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.3
    • /
    • pp.181-186
    • /
    • 2017
  • Single point incremental forming (SPIF) is a sheet-forming technique. It is a die-less sheet metal manufacturing process for rapid prototyping and small batch production. The Critical parameters in the forming process include tool diameter, step depth, feed rate, spindle speed, etc. In this study, these parameters and the die shape corresponding to the Varying Wall Angle Conical Frustum(VWACF) model were used for forming 0.8mm in thick Al5052-O sheets. The Taguchi method of Experiments of Design (DOE) and Grey relational optimization were used to determine the optimum parameters in SPIF. A response study was performed on formability, spring back, and thickness reduction. The research shows that the optimum combination of these parameters that yield best performance of SPIF is as follows: tool diameter, 6mm; spin speed, 60rpm; step depth, 0.3mm; and feed rate, 500mm/min.

A Study on Rail Vibration and Its Reduction Plan in Central Daejeon Area (대전 도심지역의 철도진동의 영향과 대책)

  • Ryu, Myoung-Ik;Suh, Man-Cheol;Lee, Won-Kook
    • Journal of the Korean Geophysical Society
    • /
    • v.3 no.4
    • /
    • pp.269-280
    • /
    • 2000
  • Rail vibration in city zone is becoming a serious environmental problem. In order to make a reduction plan for rail vibration, the research was conducted in which many experiments to measure actual rail vibration along the railroad through the central Deajeon area. A digital vibration level meter was used to measure rail vibration. Vibration levels of Z-axis were measured at every second for the duration of the train passing. The measuring station was placed at every 5m for the distance of 55m. A total of 353 different sets of vibration level were obtained. The signals were processed to get $L_{10}$ value and analyzed in terms of distance, train velocity, and number of trains. As a result, it has been found that rail vibration exceed the allowable vibraton limit of 60 dB, at the point of 25 m far from the railroad center, which is regulated by the las of vibration and noise. Train velocity was found to affect a little for vibration level within the zone. It was also found that a trench installed along a railroad could reduce vibration level up to approximately 10 percent. A model test was conducted to investigate the influence of the location and size of trench, on the transfer of vibration. A heavy steel ball was used to generate vibrations. On the basis obtained from this study, it could be concluded that the application of distance-attenuation and the installment of a trench along railroad could be applied as a reduction plan for rail vibration. Because limitions might exist to depend on the effect of distance attenuation, trenchs excavated along a railroad might be suggested as the most efficient solution to reduce railroad vibration.

  • PDF

Shear Angle Variation Depending on Chip-Tool Friction in Orthogonal Cutting (二次元 切削時 칩-工具 마찰상태에 따른 剪斷角 변화)

  • 이영문;송지복
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.2
    • /
    • pp.252-261
    • /
    • 1988
  • Through the careful interpretation of the results of the cutting tests carried out in this study, it is found that under the cutting conditions when the internal shear of the chips take place the cutting can be treated essentially as a steady state problem. A new shear angle equation has been developed employing the conditions of force and moment equilibrium about the tool edge and the stress distribution model suggested by Zorev.The equation contains the chip-tool contact length C and stress distribution index n as important parameters.

A Study on Tool Wear Diagnosis by Measuring Spindle Displacement (주축 변위 측정을 통한 공구 마모 진단에 관한 연구)

  • 김진현;김일해;장동영;한동철
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.1
    • /
    • pp.222-228
    • /
    • 2003
  • A reliable tool wear monitoring technique is the one of important aspects for achieving an integrated and self-adjusting manufacturing system. In this paper, a tool wear estimation approach for turning is proposed. This approach uses the model of cutting force, spindle displacement and their relation. A series of experiments were conducted by designing experimental techniques to determine the relationship between flank wear and cutting force coefficient as well as cutting parameters such as cutting speed, depth of cut and feed. The proposed model performance has shown that the spindle displacement model predicts tool wear with high accuracy and spindle displacement signal is possible to replace cutting force signal.

A Study on Evaluation of an Automatic Tool Compensation System in CNC Machine Tool (CNC 공작기계에서의 자동공구 보정시스템의 평가에 관한 연구)

  • 정상화;신현성;김현욱
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.04a
    • /
    • pp.371-375
    • /
    • 2001
  • The tool wear that is developed by long-term machining in mold manufacturing with machining center makes a severe influence to the accuracy and the surface roughness. In this reason, tool-wear supervising system which has guaranteed high accuracy and high speed is needed to improve the measurement quality. Touching probe and touch sensor are widely used to measure the tool profile at on-machine measurement. In this paper, using the newly developed electric touch point measuring system, the Automatic Tool Compensation System is developed to correct the error of tool diameter resulted from the wear, and the operating method of this system is also provided.

  • PDF

Development of an Automatic Tool Compensation System for M/C (머시닝센터용 자동공구보정시스템의 개발)

  • 정상화;신현성;김현욱
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.10 no.4
    • /
    • pp.48-54
    • /
    • 2001
  • The tool wear that is developed by long-term machining in mold manufacturing with machining center makes a severe influence to the accuracy and the surface roughness. in this reason, tool-wear supervising system which has guaranteed high accuracy and high speed is needed to improve the measurement quality. Touching probe and touch sensor are widely used to measure the tool profile at on-machine measurement. In this paper, using the newly developed electric touch point measuring system, the Automatic Tool Compensation System is developed to correct the error of tool diameter resulted from the wear, and the operating method of this system is also provided.

  • PDF