• Title/Summary/Keyword: 측위 오차

Search Result 340, Processing Time 0.027 seconds

Accuracy Analysis of Positioning Supplementary Control Point with the Combined GPS/GLONASS and TS (GPS/GLONASS와 TS 결합에 의한 도근점 측위의 정확도 분석)

  • 박운용;곽두호;김용보;백기석
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.21 no.3
    • /
    • pp.199-207
    • /
    • 2003
  • In the study, the open area keeping a few visible satellites and the urban area covered with the high building, an electric pole were chosen far evaluation of accuracy of satellite positioning. First, suggest the validity of GPS/GLONASS, TS/RTK-GPS, and compared the accuracy with that of the classical surveying method. As a result, In static relative surveying, the difference of between the known cadastral supplementary control station and that of the acquired is 0.000∼.0006m in GPS alone, GPS/GLONASS, and In the RTK-GPS/TS, 0.010∼0.077m on the non-ambiguity fixed solutions in the urban area 0.008∼0.078m in the open area. it proved to be valid because it is within the allowed connecting errors, i.e 12cm on the baseline of loom in l/l,200 cadastral map.

RSSI based Indoor Positioning System using effective location compensation (효율적인 위치 보정 방법을 적용한 RSSI 기반 실내 위치 측위 시스템)

  • Kim, Yeong Ju;Park, Jin Gwan;Heo, Yu Gyeong;Park, Sun;Yang, Hu Yeol;Jung, Min A
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.10a
    • /
    • pp.432-434
    • /
    • 2013
  • 본 논문의 실내위치측위시스템은 무선랜 환경에서 AP의 RSSI 신호를 수신하여 Friis 공식을 통해 거리로 산출되고, 산출된 거리는 삼각측량법에 의해 (x, y)좌표로 변환되어 현재의 위치를 나타낸다. 여기서 RSSI 신호는 신호잡음을 포함하고 신호잡음으로 인하여 실제 위치 측위 시 오차가 발생한다. 이러한, 오차를 보정하고 실내위치측위 정확도를 향상하기 위해 비선형시스템에서 사용하는 확장칼만필터를 적용하여 실험하였다. 본 실내위치측위시스템의 시스템모델은 선형이고 측정모델은 비선형이므로 효율적인 보정알고리즘인 확장칼만필터를 선택하고 실험은 MATLAB로 수행하였다. 실험결과 실내위치측위시스템의 정확도가 향상되었다.

  • PDF

A Study on the Technological and Environmental Factors Affecting the Accuracy of Beacon Based Indoor Positioning System (기술적, 환경적 요소에 따른 비콘 기반 실내 측위 정확도 변화연구)

  • Byeon, Tae-Woo;Jang, Seong-Yong
    • Journal of the Korea Society for Simulation
    • /
    • v.25 no.2
    • /
    • pp.21-29
    • /
    • 2016
  • Indoor location system has been used Wi-Fi to get a location. After the development of BLE(Bluetooth Low Energy), the interest in the method of a indoor positioning had been move on. It has more advantages than using Wi-Fi. Easy installation, low power consumption, low signal interference and changeable setting(Advertising interval, tx power, etc.). These things can improve efficiency or accuracy in a indoor positioning system. For this reason, recent indoor positioning system uses BLE rather than Wi-Fi. Accordingly, error factors of BLE beacon based indoor positioning should be studying for high accuracy of indoor positioning. In this research, set up few experiment scenarios and keep a close watch on how technological, environmental factor is affecting positioning accuracy. When a application uses largest signal strength to get the indoor location, the mean error of experimental results was decreased compare to using received signal strength in real-time. The result was same when the application applied average and standard deviation to get the indoor location. Changing advertising interval had an effect on the mean error of indoor positioning. Short advertising interval makes the lower mean error than large advertising interval.

Analysis for Accuracies of Position Fix by GPS in Kusan Area (군산지역에서의 GPS측위정도 해석)

  • LEE Won-Woo;SHIN Hyeong-Il;LEE Dae-Jae
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.26 no.3
    • /
    • pp.250-257
    • /
    • 1993
  • The Global Positioning System(GPS) is a worldwide radio navigation system based on satellite technology. Signal availability and accuracy of GPS are subject to change due to an incomplete constellation and operational test activities. In order to analyze the signal availability and accuracy of GPS, we made an experiment on this system in Kunsan during April 6, 7, 9, 10, 1992. The results obtained are summarized as follows: 1. It was possible to avail the GPS system almost 24 hours per day, but sometimes it was impossible to obtain the GPS signal 2 or 3 times per day and its total time was at the most an hour. 2. By using satellite almanac, we also could calculate PDOP(HDOP) and forecast signal availability. And the mean positional error was $37.9{\sim}73.6m$ and standard deviation was $37.4{\sim}133.1m$. The positional error almost coincided with PDOP(HDOP). 3. The mean positional error of 3D was less than that of 2D. And the altitude error in 3D was about $56{\sim}74m$ and its standard deviation was about $65{\sim}93m$.

  • PDF

Accuracy Enhancement using Network Based GPS Carrier Phase Differential Positioning (네트워크 기반의 GPS 반송파 상대측위 정확도 향상)

  • Lee, Yong-Wook;Bae, Kyoung-Ho
    • Spatial Information Research
    • /
    • v.15 no.2
    • /
    • pp.111-121
    • /
    • 2007
  • The GPS positioning offer 3D position using code and carrier phase measurements, but the user can obtain the precise accuracy positioning using carrier phase in Real Time Kinematic(RTK). The main problem, which RTK have to overcome, is the necessary to have a reference station(RS) when using RTK should be generally no more than 10km on average, which is significantly different from DGPS, where distances to RS can exceed several hundred kilometers. The accuracy of today's RTK is limited by the distance dependent errors from orbit, ionosphere and troposphere as well as station dependent influences like multipath and antenna phase center variations. For these reasons, the author proposes Network based GPS Carrier Phase Differential Positioning using Multiple RS which is detached from user receiver about 30km. An important part of the proposed system is algorithm and software development, named DAUNet. The main process is corrections computation, corrections interpolation and searching for the integer ambiguity. Corrections computation of satellite by satellite and epoch by epoch at each reference station are calculated by a Functional model and Stochastic model based on a linear combination algorithm and corrections interpolation at user receiver are used by area correction parameters. As results, the users can obtain the cm-level positioning.

  • PDF

도심지 DMB 기반 DGPS 측위 정확도에 관한 연구

  • Lim, Young-min;Lee, Seung-churl;Kim, Young-jae;Lee, Byoung-gon
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2014.10a
    • /
    • pp.280-282
    • /
    • 2014
  • DMB 기반 DGPS 시스템은 기존 중파 DGPS의 음영구역 해소 및 내륙에서의 DGPS 이용자 활성화를 목적으로 개발된 전달매체이다. 본 연구는 향후 유동인구와 교통량이 많아 이용 수요가 크게 예상되며, 멀티패스 등의 영향으로 측위 오차가 큰 도심에서 저가형 수신기를 이용하여 실제 기준국 및 가상 기준국의 DGPS 보정정보를 DMB 기반으로 수신하여 수신환경 수신기별 정지측량과 이동측위를 측정한 결과를 분석하였다.

  • PDF

MBC 정밀위치측위 서비스와 자율주행차

  • Lee, Seung-Ho
    • Broadcasting and Media Magazine
    • /
    • v.24 no.1
    • /
    • pp.56-62
    • /
    • 2019
  • MBC 기술연구소 산하 기술정보사업팀에서는 수 센티미터 이하의 오차정밀도를 요구하는 측지측량, 3D 건설기계 제어 등의 응용분야부터, 극도의 서비스 안정성을 요구하는 자율주행차, 드론 등의 응용분야에 걸쳐 정밀위치 보정정보를 제공하는 'MBC RTK' 상용서비스를 실시하고 있다. 본 고에서는 MBC의 정밀위치측위 서비스인 'MBC RTK' 서비스를 소개하고, 자율주행차의 적용적합성을 설명하고자 한다.

Development of GPS-RTK Algorithm for Improving Geodetic Performance in Short Baseline (단기선 측지 성능 향상을 위한 GPS-RTK 알고리즘 개발)

  • Choi, Byung-Kyu;Lee, Sang-Jeong;Park, Jong-Uk;Baek, Jeong-Ho
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.27 no.4
    • /
    • pp.461-467
    • /
    • 2009
  • Relative positioning technique by GPS that can obtain the high positioning accuracy has been used for generation of high precision positioning with elimination or the reduction of the common errors. This paper gives some algorithms for RTK and considers the filter to estimate the positioning information and integer ambiguities at each epoch in the whole algorithms. The extended kalman filter has been employed to estimate the state parameters and the modified LAMBDA to resolve the integer ambiguities. The data processing was performed by GPS single frequency and dual frequency in short baseline. The verification procedure of these positioning compared with results from Bernese 5.0 software. We presented some statistic values on positioning errors and the rates of integer ambiguity resolution.

Precise Positioning from GPS Carrier Phase Measurement Applying Stochastic Models for Ionospheric Delay (전리층 지연 효과의 통계적 모델을 이용한 반송파 정밀측위)

  • Yang, Hyo-Jin;Kwon, Jay-Hyoun
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.25 no.4
    • /
    • pp.319-325
    • /
    • 2007
  • In case of more than 50km baseline length, the correlation between receivers is reduced. Therefore, there are still some rooms for improvement of its positional accuracy. In this paper, the stochastic modeling of the ionospheric delay is applied and its effects are analyzed. The data processing has been performed by constructing a Kalman filter with states of positions, ambiguities, and the ionospheric delays in the double differenced mode. Considering the medium or long baseline length, both double differenced GPS phase and code observations are used as observables and LAMBDA has been applied to fix the ambiguities. The ionospheric delay is stochastically modeled by well-known 1st order Gauss-Markov process. And the correlation time and variation of 1st order Gauss-Markov process are calculated. This paper gives analyzed results of developed algorithm compared with commercial software and Bernese.

The analysis for the static and kinetic positioning accuracy of NDGPS (NDGPS의 정적 및 동적 측위 정확도 분석)

  • Song, Geul-Jae;Park, Kwon-Il;Kong, Hyun-Dong
    • Journal of Navigation and Port Research
    • /
    • v.32 no.8
    • /
    • pp.611-619
    • /
    • 2008
  • The Ministry of Land, Transport and Maritime Affairs is working on the construction of Nationwide DGPS(NDGPS) with connection to Maritime DGPS Reference Stations and if Chun-cheon Reference Station is to be completed in 2008, DGPS positioning information is available in the whole area of Republic of Korea. Therefore to promote the usage of DGPS surveying information, we measured and panalyzed the accuracy of DGPS. In real-time DGPS positioning accuracy were 0.42m of planar Root Mean Square(RMS) error in static survey and 0.48m of planar RMS error in dynamic survey. We went abreast with RTK comparison measurement. According to these results. DGPS positioning information cannot be applied directly to the GIS construction field, but GIS application fields, requiring the real-time positioning information. can take advantage of it in variable cases.