• Title/Summary/Keyword: 측벽

Search Result 331, Processing Time 0.026 seconds

A Study on Hydraulic Modifications of Low-Pressure Membrane Inlet Structure with CFD and PIV Techniques (CFD와 PIV 기법을 이용한 저압막 유입부 수리구조 개선에 관한 연구)

  • Oh, Jeong Ik;Choi, Jong-Woong;Lim, Jae-Lim;Kim, Donggil;Park, No-Suk
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.37 no.11
    • /
    • pp.607-618
    • /
    • 2015
  • This study was conducted to suggest hydraulic modification for improving evenness of inlet flow distribution into side stream type low-pressure MF (microfiltration) module using CFD (computational fluid dynamics) simulation and PIV (particle image velocimetry) techniques. From the results of CFD simulation for various typed inlet structure, it was investigated that installing internal orifice baffle in inlet the distribution channel could improve the evenness of inlet flow distribution over about 40%. Also, from the results of PIV measurements which were carried out for verifying the CFD simulation, it was observed that the momentum of the water body coming from the opposite side of the inlet was relatively larger. This momentum would generate strong shear force in the near of inlet side wall. On the other hands, occurrence of dead zone and eddy flow was confirmed in the opposite side.

Interfacial Friction Factor in Arrested Saline Wedge (정상염수(定常塩水)쐐기에 있어서의 계면저항계수(界面低抗係數)의 평가(評價))

  • Lee, Moon Ock;Murota, Akira
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.9 no.1
    • /
    • pp.53-62
    • /
    • 1989
  • In order to determine the form and the length of saline wedge, it is necessary to evaluate interfacial friction factor. Hetherto one dimensional two-layer flow model which assumed pressure as the hydrostatic pressure distribution has been well used to the calculation of saline wedge form, it just then stands in need of relevant interfacial friction factor. For example, in the case where we calculate back to interfacial friction factor out of saline wedge form obtained at a laboratory open channel with comparatively narrow width, it is needed to correct the side-wall effect of a channel, if generally negligible in the river. In this study, we confirmed the influence of a side-wall upon the lateral velocity distributions at laboratory channel and then examined in detail the value of interfacial friction factor in the case where it was corrected by the side-wall effect and not corrected. And then we make clear the influence of a side-wall upon the arrested saline wedge and interfacial faction factor from these results.

  • PDF

Study of Sloshing Flow in a Rectangular Tank (사각용기의 슬로싱 유동에 관한 연구)

  • Ji, Young-Moo;Shin, Young-Seop;Park, Jun-Sang;Hyun, Jae-Min
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.6
    • /
    • pp.617-624
    • /
    • 2011
  • The two-dimensional sloshing problem in a rigid rectangular tank with a free surface is considered. The flow is generated by a container in harmonic motion in time along the horizontal axis, i.e., a container excited by u=Asin($2{\pi}ft$) where u denotes the container velocity imposed externally, A is the amplitude of the oscillation velocity, and f is the frequency of oscillation. Experimental apparatus is arranged to investigate the large-amplitude sloshing flows in off-resonant conditions, where the large amplitude means that A~O(1), and the distance, S, is comparable to the breadth, L, of the container, i.e., L/S~O(1). Comprehensive particle image velocimetry (PIV) data are obtained, which show that the flow physics of the nonlinear off-resonant sloshing problem can be characterized into three peculiar free surface motions: standing-wave motions similar to those of linear sloshing, a run-up phenomenon along the vertical sidewall at the moment of turn-over of the container, and gradually propagating bore motion from the sidewall to the interior fluid region, like a hydraulic jump.

A Study on the Strength Safety Analysis of a Full Containment LNG Storage Tank Due to a Wind Pressure (완전밀폐식 LNG 저장탱크에 작용하는 풍압에 의한 강도안전 해석에 관한 연구)

  • Kim, Chung-Kyun;Jeong, Nam-In
    • Journal of the Korean Institute of Gas
    • /
    • v.12 no.1
    • /
    • pp.36-41
    • /
    • 2008
  • Using the finite element analysis, this paper presents the strength safety of a side wall of an outer tank and a roof structures in a full containment LNG storage tank system. The outer tank structure in which is constructed with a prestressed concrete is forced by internal hydrostatic and hydrodynamic pressures of a leaked LNG and an external wind pressure including a typhoon one. The FEM computed results show that the ring beam between a side wall of an outer tank and a roof structure supports most of the internal and the external loads. This means that the design point of the outer tank system is a ring beam structure and the other one is a center part of the roof structure. In this FE analysis model of a full containment LNG tank system, the outer tank and the roof structures are safe for the given combined loads such as an internal leaked LNG pressure and an external typhoon pressure.

  • PDF

RIE induced damage recovery on trench surface (트렌치 표면에서의 RIE 식각 손상 회복)

  • 이주욱;김상기;배윤규;구진근
    • Journal of the Korean Vacuum Society
    • /
    • v.13 no.3
    • /
    • pp.120-126
    • /
    • 2004
  • A damage-reduced trench was investigated in view of the defect distribution along trench sidewall and bottom using high resolution transmission electron microscopy, which was formed by HBr plasma and additive gases in magnetically enhanced reactive ion etching system. Adding $O_2$ and other additive gases into HBr plasma makes it possible to eliminate sidewall undercut and lower surface roughness by forming the passivation layer of lateral etching. To reduce the RIE induced damage and obtain the fine shape trench corner rounding, we investigated the hydrogen annealing effect after trench formation. Silicon atomic migration on trench surfaces using high temperature hydrogen annealing was observed with atomic scale view. Migrated atoms on crystal surfaces formed specific crystal planes such as (111), (113) low index planes, instead of fully rounded comers to reduce the overall surface energy. We could observe the buildup of migrated atoms against the oxide mask, which originated from the surface migration of silicon atoms. Using this hydrogen annealing, more uniform thermal oxide could be grown on trench surfaces, suitable for the improvement of oxide breakdown.

Improvement of semiconductor contact hole filling of Copper by ionized cluster beam deposition technique (이온화클러스터빔 증착법에 의한 구리 박막의 반도체 접촉구 메움 향상에 관한 연구)

  • Baek, Min;Son, Ki-Wang;Kim, Do-Jin
    • Journal of the Korean Vacuum Society
    • /
    • v.7 no.2
    • /
    • pp.118-126
    • /
    • 1998
  • A study to improve filling of semiconductor contact holes by enhancement of the directionality of the source beams has been undertaken. The collimation of source beams was improved by the ionized cluster beam deposition technique with modification of the cell geometry. The collimation tested with neutral beam was excellent. But, the Cu flims were grown in a columnar mode due to the lack of surface mobilit of the impinged clusters. A shadow effect also caused cleavage and consequent discontinuity at the steos as films grow. By applying acceleration voltage, the columnar growth in a contact hole of 0.5 $\mu$m diameter and 1 $\mu$m height disappeared and considerable coverage at the side wall of the contacts as well as perfect bottom coverage were observed. These are all due to the assistants of the accelerated ionized clusters with high kinetic energy. Thus we demonstrated that the ICB deposition technique can be used to completely fill sub-half-micron contact holes with high aspect ratio.

  • PDF

3D Finite Element Analysis of Rock Behavior with Bench Length and Gther Design Parameters of Tunnel (터널의 벤치길이를 중심으로 한 설계변수에 따른 암반거동의 3차원 수치해석)

  • 강준호;정직한;이정인
    • Tunnel and Underground Space
    • /
    • v.11 no.1
    • /
    • pp.30-35
    • /
    • 2001
  • Focusing on the bench length, this paper presents the results of 3-dimensional elafto-plastic FE Analysis un tunnels of full face, mini-bench and short bench excavated in weathered rock. Influences of unsupported span, horizontal to vertical stress ratio, thickness of shotcrete on the behavior of rock and support were a1so studied. Results showed that displacements of mini-bench tunnels responded more sensitively to bench lengths than those of short bench. The effects of bench excavation on upper half displacement increased with longer unsupported span. Horizontal to vertical stress ratio showed a greater influence on displacement and preceding displacement ratio or sidewall rather than those of crown and invert.

  • PDF

Effects of Gas Chemistries on Poly-Si Plasma Etching with I-Line and DUV Resist (I-Line과 DUV Resist에서 Poly-Si 플라즈마 식각시 미치는 개스의 영향)

  • 신기수;김재영
    • Journal of the Korean Vacuum Society
    • /
    • v.7 no.2
    • /
    • pp.155-160
    • /
    • 1998
  • It is necessary to use Arc layer and DUV resist to define 0.25 $\mu \textrm{m}$ line and space for 256 MDRAM devices. Poly-Si etching with Arc layer and different resists has been performed in a TCP-9408 etcher with variation of gas chemistries; $Cl_2/O_2, Cl_2/N_2, Cl_2$/HBr . DUV resist causes more positive etch profile and CD gain compared to I-line resist because the sidewall passivation is more stimulated by increasing polymerization through the loss of resist. When Arc layer is applied, CD hain also increases due to the polymeric mask formed after thching Arc layer. From the point of gas chemistry effects, the etch profile and CD gain is not improved using $Cl_2/O_2$ gas, since polymerization is accelerated in this gas. however, the vertical profile and less CD gain is obtained using $Cl_2$/HBr gas. Furthermore, HBr gas is very effective to suppress the difference of profile and CD variation between dense pattern and isolated pattern by minimizing non-uniformity of side wall passivation with pattern density.

  • PDF

Ground Behavior and Reinforcing Methods of NATM Tunnel through Deep Weathered Zone (대심도 풍화대층에서 NATM 터널의 지반거동 및 보강방법)

  • Chun, Byung-Sik;Song, Seung-Hoon;An, Jung-Whan
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.8
    • /
    • pp.87-95
    • /
    • 2007
  • This study analyzed ground settlement and ground stress depending on tunnel excavation and the ground reinforcing grouting methods for double line road tunnel through deep weathered zone. Diameter of double line road tunnel was approximately 12m and umbrella arch method and side wall reinforcing grouting were applied. The ring-cut split excavation method and CD-cut excavation method for excavation method were applied. Analyses of failure rate and vertical stress ratio show that the tunnel for which the height of the cover (H) was higher than four times the diameter, can be considered a deep tunnel. Comparisons of various excavation and ground reinforcement methods showed that CD-cut method results in lower surface and crown settlement, and lower failure rate than that obtained by Ring-cut split method. In addition, the side wall reinforcing grouting resulted in reduction of tunnel displacement and settlement.

DIFFERENCE IN BOND STRENGTH ACCORDING TO FILLING TECHNIQUES AND CAVITY WALLS IN BOX-TYPE OCCLUSAL COMPOSITE RESIN RESTORATION (박스 형태의 복합레진 수복시 충전법 및 와동벽에 따른 결합력 차이에 관한 연구)

  • Ko, Eun-Joo;Shin, Dong-Hoon
    • Restorative Dentistry and Endodontics
    • /
    • v.34 no.4
    • /
    • pp.350-355
    • /
    • 2009
  • Bond strength depends on characteristics of bonding surface and restorative technique. The majority of studies dealing with dentin bond strength were carried out on flat bonding surface, therefore, difference of bond strength between axial wall and pulpal wall is not clear yet. This study evaluated bonding difference between cavity walls in class I composite resin restoration with different filling techniques. Twenty extracted caries-free human third molars were used. Cavities were prepared in 6 ${\times}$4 ${\times}$3 mm box-type and divided into four groups according to filling technique and bonding surface: Group I; bulk filling - pulpal wall, Group II; bulk filling - axial wall, Group III; incremental filling - pulpal wall, Group IV; incremental filling - axial wall. Cavities were filled with Filtek $Z250^{(R)}$(3M/ESPE., USA) and Clearfill SE $bond^{(R)}$(Kuraray, Japan). After 24 hour-storage in $37^{\circ}C$water, the resin bonded teeth were sectioned bucco-lingualy at the center of cavity. Specimens were vertically sectioned into 1.0 ${\times}$1.0 mm thick serial sticks perpendicular to the bond surface using a low-speed diamond saw (Accutom 50, Struers, Copenhagen, Denmark) under water cooling. The trimmed specimens were then attached to the testing device and in turn, was placed in a universal testing machine (EZ test, Shimadzu Co., Kyoto, Japan) for micro-tensile testing at a cross-head speed of 1 mm/min. The results obtained were statistically analyzed using 2-way ANOVA and t-test at a significance level of 95%. The results were as follows: 1. There was no significant difference between bulk filling and incremental filling. 2. There was no significant difference between pulpal wall and axial wall, either. Within the limit of this study, it was concluded that microtensile bond strength was not affected by the filling technique and the site of cavity walls.