• Title/Summary/Keyword: 측방향 온도분포

Search Result 3, Processing Time 0.018 seconds

An Experimental Study on the Cylinder Wall Temperature Characteristics for Load Variations in a Gasoline Engine (가솔린엔진의 부하(負荷)에 따른 실린더 벽면 온도특성(溫度特性)에 관(關)한 연구(硏究))

  • Kwon, K.R.;Ko, J.K.;Hong, S.C.
    • Journal of Power System Engineering
    • /
    • v.3 no.1
    • /
    • pp.16-22
    • /
    • 1999
  • The purpose of this study is to prevent the stick, scuffing, scratch between piston and cylinder, is to contribute the piston design such as piston profile, clearance by calculating reaction force by over-lap of piston skirt, as measuring the temperature distributions of cylinder wall. The experiment has been peformed to obtain data during actual engine operation. Temperature gradient in peripheral and axial distributions of cylinder wall according to torque and speed of engine were measured by use of an 800cc class gasoline engine. The results obtained are summarized as follows ; 1) The temperature of cylinder wall at TDC was about $50{\sim}75^{\circ}C$ higher than temperature of cooling water. 2) The rear side temperature of top dead center was $141^{\circ}C$(1/4 load) in axial distribution, whereas the rear side of midway position temperature was $98^{\circ}C$. 3) The temperature of cylinder wall increased in according to rising temperature of cooling water. 4) The thrust side temperature of cylinder wall was about $15^{\circ}C$ in all load test. 5) The rear side temperature of top dead center was $159^{\circ}C$ (1/2 load) in peripheral distribution, it was about $39^{\circ}C$ higher than thrust side temperature.

  • PDF

A Study on the Evaporation and Distribution Velocity a Volatile Mixtures (가연성 혼합액체의 증발 및 분포 속도에 관한 연구)

  • An, Hyung-Whan
    • Journal of the Korean Institute of Gas
    • /
    • v.18 no.6
    • /
    • pp.1-6
    • /
    • 2014
  • This study is based on a investigation regarding the evaporation rate of a volatile liquid(methanol, tetrahydrofuran, xylene) according to changes of the temperature and wind. The weight of a volatile liquid was standardized to 24 g and the mixture was formed with the same weight ratio. In order to discover about the effect of the wind velocity, small fan was installed at 10 cm above the entrance and 30 cm away in the direction of the cylinder. The effect of the wind velocity was tested at 0 m/s, 1.63 m/s, 2.03 m/s respectively and the effect of the temperature on the volatile liquid was experimented at the temperature of $21^{\circ}C$, $32^{\circ}C$, $52^{\circ}C$ in the constant temperature water base. As a result, in case of Xylene, the evaporation rate of the tetrahydrofuran and methanol showed 1.4 mg/min, 19.8 mg/min and 10.2 mg/min respectively. Also, the effect of the evaporation rate on the temperature of the volatile liquid and on the velocity of wind was shown to be very sensitive. At the same time, the evaporation rate of the mixture showed large difference compared to that of the single volatile liquid.

Comparison with SAR Patterns of Biological Objects Contacted with Coaxial Waveguide Antenna Using MUR and GPML ABCs in the FDTD Method (유한차분법에서 MUR과 GPML 흡수경계조건을 이용한 동축 도파관 안테나에 접촉된 생체의 SAR 패턴 비교)

  • 구성모;권광희;이창원;원철호;조진호
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.9 no.2
    • /
    • pp.149-158
    • /
    • 1998
  • The SAR patterns of biological objects contacted with coaxial waveguide antennal has been investigated, in which the biological object was modeled by a homogeneous and four-layered lossy human body. We derived the finite-difference time-domain(FDTD) algorithm and equation of MUR and generalized perfectly matched layer(GPML) ABCs in cylindrical coordination. The coupling between coaxial waveguide antenna and a biological object was analyzed by use of MUR and GPML ABCs in the FDTD method to obtain the absorbed power patterns in the media. The specific absorption rates (SAR) distribution which was corresponding to the temperature distribution was calculated in each region by use of the steady-state response in the FDTD method. The SAR patterns of the FDTD method using MUR absorbing boundary conditions(ABCs) was compared with those of the FDTD method using GPML ABCs. The comparison exhibits that the penetration depth of the SAR patterns using MUR ABCs is deeper than that of the SAR patterns using GPML ABCs because of loss in free space. However, the spread in the lateral directions of the SAR patterns using GPML ABCs is smaller than of the SAR patterns using MUR ABCs.

  • PDF