• Title/Summary/Keyword: 충진특성

Search Result 636, Processing Time 0.026 seconds

Heterogeneous Oxidation of Liquid-phase TCE over $CoO_x/TiO_2$ Catalysts (액상 TCE 제거반응을 위한 $CoO_x/TiO_2$ 촉매)

  • Kim, Moon-Hyeon;Choo, Kwang-Ho
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.3
    • /
    • pp.253-261
    • /
    • 2005
  • Catalytic wet oxidation of ppm levels of trichloroethylene (TCE) in water has been conducted using $TiO_2$-supported cobalt oxides at a given temperature and weight hourly space velocity. 5% $CoO_x/TiO_2$ might be the most promising catalyst for the wet oxidation at $36^{\circ}C$ although it exhibited a transient behavior in time on-stream activity. Not only could the bare support be inactive for the wet decomposition reaction, but no TCE removal also occurred by the process of adsorption on $TiO_2$ surface. The catalytic activity was independent of all particle sizes used, thereby representing no mass transfer limitation in intraparticle diffusion. Characterization of the $CoO_x$ catalyst by acquiring XPS spectra of both fresh and used Co surfaces gave different surface spectral features of each $CoO_x$. Co $2p_{3/2}$ binding energy of Co species exposed predominantly onto the outermost surface of the fresh catalyst appeared at 781.3 eV, which is very similar to the chemical states of $CoTiO_x$ such as $Co_2TiO_4$ and $CoTiO_3$. The spent catalyst possessed a 780.3 eV main peak with a satellite structure at 795.8 eV. Based on XPS spectra of reference Co compound, the TCE-exposed Co surfaces could be assigned to be in the form of mainly $Co_3O_4$. XRD measurements indicated that the phase structure of Co species in 5% $CoO_x/TiO_2$ catalyst even before reaction is quite comparable to the diffraction lines of external $Co_3O_4$ standard. A model structure of $CoO_x$ present on titania surfaces would be $Co_3O_4$, encapsulated in thin-film $CoTiO_x$ species consisting of $Co_2TiO_4$ and $CoTiO_3$, which may be active for the decomposition of TCE in a flow of water.

A Study of Improvement for the Prediction of Groundwater Pollution in Rural Area: Application in Keumsan, Korea (농촌지역 지하수의 오염 예측 방법 개선방안 연구: 충남 금산 지역에의 적용)

  • Cheong, Beom-Keun;Chae, Gi-Tak;Koh, Dong-Chan;Ko, Kyung-Seok;Koo, Min-Ho
    • Journal of Soil and Groundwater Environment
    • /
    • v.13 no.4
    • /
    • pp.40-53
    • /
    • 2008
  • Groundwater pollution prediction methods have been developed to plan the sustainable groundwater usage and protection from potential pollution in many countries. DRASTIC established by US EPA is the most widely used groundwater vulnerability mapping method. However, the DRASTIC showed limitation in predicting the groundwater contamination because the DRASTIC method is designed to embrace only hydrogeologic factors. Therefore, in this study, three different methods were applied to improve a groundwater pollution prediction method: US EPA DRASTIC, Modified-DRASTIC suggested by Panagopoulos et al. (2006), and LSDG (Land use, Soil drainage, Depth to water, Geology) proposed by Rupert (1999). The Modified-DRASTIC is the modified version of the DRASTIC in terms of the rating scales and the weighting coefficients. The rating scales of each factor were calculated by the statistical comparison of nitrate concentrations in each class using the Wilcoxon rank-sum test; while the weighting coefficients were modified by the statistical correlation of each parameter to nitrate concentrations using the Spearman's rho test. The LSDG is a simple rating method using four factors such as Land use, Soil drainage, Depth to water, and Geology. Classes in each factor are compared by the Wilcoxon rank-sum test which gives a different rating to each class if the nitrate concentration in the class is significantly different. A database of nitrate concentrations in groundwaters from 149 wells was built in Keumsan area. Application of three different methods for assessing the groundwater pollution potential resulted that the prediction which was represented by a correlation (r) between each index and nitrate was improved from the EPA DRASTIC (r = 0.058) to the modified rating (r = 0.245), to the modified rating and weights (r = 0.400), and to the LSDG (r = 0.415), respectively. The LSDG seemed appropriate to predict the groundwater pollution in that it contained land use as a factor of the groundwater pollution sources and the rating of each class was defined by a real pollution nitrate concentration.

Characteristics of Sea Water Intrusion Using Geostatistical Analysis of Geophysical Surveys at the Southeastern Coastal Area of Busan, Korea (지구물리 탐사자료의 지구통계학적 분석에 의한 부산 동남해안 지역의 해수침투 특성)

  • 심병완;정상용;김희준;성익환;김병우
    • Journal of Soil and Groundwater Environment
    • /
    • v.7 no.3
    • /
    • pp.3-17
    • /
    • 2002
  • Data analysis of groundwater monitoring wells and geostatistical methods are used to identify the local characteristics of sea water intrusion and the range of sea water intrusion at the southeastern coastal area of Busan, Korea. Rainfall and groundwater level of two monitoring wells show a linear correlation because of the direct groundwater recharge by the precipitation. However, rainfall and electric conductivity have the inverse relationship because of the increase of groundwater. Electric conductivity rapidly increased at 24m depth and exceeded 20,000$\mu\textrm{s}$/cm near 26m depth in the monitoring wells. The variations of groundwater level and electric conductivity show that the interface between sea water and fresh water tends to move upward when groundwater level goes down. In the cross correlation analysis, groundwater level versus rainfall represents the largest cross correlation coefficient in 0 time lag but the cross correlation coefficient of electric conductivity versus rainfall is the largest when the time lag is 9 days. This suggests that the fluctuations of groundwater level respond to rainfall in a short time, but the interface between sea water and fresh water respond very slow to rainfall. Horizontal extents of sea water intrusion are estimated to 14 m from the east of Line 1, and 25 m from the southeast end of Line 2 in the inversion of dipole-dipole profiling data of two survey lines. The data of VES by the Schulumberger array in May and July show lognormal distributions. In the kriged apparent resistivity and earth resistivity distributions, the resistivities of July are increased comparing to those of May. This reflects that the concentration of sea water in aquifer is reduced due to the increased groundwater recharge from the rainfall in June and July. In analyzing the vertical and horizontal apparent resistivities and earth resistivity distributions, the geostatistical methods are very useful to identify the variations of earth resistivity distributions at the coastal area.

Changes of characteristics of livestock feces compost pile during composting period and land application effect of compost (축분 퇴비화과정 중 특성변화와 축분퇴비 이용효과)

  • Jeong, Kwang-Hwa;Kang, Ho
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.9 no.1
    • /
    • pp.56-64
    • /
    • 2001
  • Composting of livestock feces is economic and safe process to decrease the possibility of direct leakage of organic pollutants to ecosystem from commercial and environmental point of view. This study was conducted with three different experiments related to composting of livestock feces. The purpose of experiment 1 was to investigate changes of characteristic of compost pile during composting period by low temperature in cold season. To compare composting effect of experimental compost pile and control pile exposed in cold air, experimental compost piles were warmed up by hot air until their temperatures were reached at $35^{\circ}C$. Sawdust, Ricehull and Ricestraw were mixed with livestock feces as bulking agent. The highest temperatures of compost pile during composting period were in sawdust, rice hull, rice straw, and control were $75^{\circ}C$, $76^{\circ}C$, $68^{\circ}C$, $45^{\circ}C$ respectively. Moisture content, pH, C/N and volume of compost were decreased during composting period. Experiment 2 was carried out to study utilization effect of compost by plant. A corn was cultivated for 3 years on fertilized land with compost and chemical fertilizer. The amount of harvest and nutrition value of corn were analyzed. In first year of trial, the amount of harvest of corn on land treated with compost was lower by 20% than that of land treated with chemical fertilizer. In second year, there was no difference in yield of com between compost and chemical fertilizer. In third year, the yield of com on land fertilized with compost was much more than that of land fertilized with chemical fertilizer. The purpose of experiment 3 was to estimate the decrease of malodorous gas originating from livestock feces by bio-filter. Four types of bio-filters filled with saw dust, night soil, fermented compost and leaf mold were manufactured and tested. Each bio-filter achieved 87-95% $NH_3$ removal efficiency. This performance was maintained for 10 days. The highest $NH_3$ removal efficiency was achieved by leaf mold on the first day of operation period. It reduced the concentration of $NH_3$ by about 95%. Night soil and fermented compost showed nearly equal performance of 93 to 94% for 10 days from the beginning of operation. The concentration of hydrogen sulfide and methyl mercaptan originating for compost were equal to or less than $3mg/{\ell}$ and $2mg/{\ell}$, respectively. After passing throughout the bio-filter, hydrogen sulfide and methyl mercaptan were not detected.

  • PDF

Hydrogeologic and Hydrogeochemical Assessment of Water Sources in Gwanin Water Intake Plant, Pocheon (포천 관인취수장 수원에 대한 수리지질 및 수리지구화학적 평가)

  • Shin, Bok Su;Koh, Dong-Chan;Chang, Yoon-Young
    • Journal of Environmental Impact Assessment
    • /
    • v.25 no.3
    • /
    • pp.209-221
    • /
    • 2016
  • The section from water source to 2.6km upper stream of Hantan River is protected as the drinking water quality protection area according to guidelines of Ministry of Environment, because water source of the Gwanin water intake plant has been known the river. However, opinions were consistently brought up that the standard of water source protection zone must be changed with using underground water as water source because of contribution possibility of underground water as the water source of Gwanin water intake facility. In this regard, hydrogeologic investigation including resistivity survey and hydrogeochemical investigation were carried out to assess water source and infiltration of contaminant for the plant. Quaternary basaltic rocks (50m thick with four layers) covered most of the study area on the granite basement. As the result of the resistivity survey, it is revealed that permeable aquifer is distributed in the boundary of two layers: the basaltic layer with low resistivity; and the granite with high resistivity. Considering of outflow from Gwanin water intake facility, the area possessing underground water was estimated at least $5.7km^2$. The underground water recharged from Cheorwon plain was presumed to outflow along the surface of unconformity plane of basalt and granite. Based on field parameters and major dissolved constituents, groundwater and river water clearly distinguished and the spring water was similar to groundwater from the basaltic aquifer. Temporal variation of $SiO_2$, Mg, $NO_3$, and $SO_4$ concentrations indicated that spring water and nearby groundwater were originated from the basaltic aquifer and other groundwater from granitic aquifer. In conclusion, the spring of the Gwanin water intake plant was distinguished from river water in terms of hydrogeochemical characteristics and mainly contributed from the basaltic aquifer.

Operation Parameters on Biological Advanced Treatment of Phenolic High-Strength Wastewater (페놀계 고농도 유기성 폐수의 생물학적 고도처리 운전인자)

  • Hong, Sung-Dong;Park, Chul-Hwi
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.4
    • /
    • pp.797-806
    • /
    • 2000
  • The objectives were to compare the biodegradable threshold concentrations of phenol with the different composition of the influent carbon source and examine the SMA (Specific Methanogenic Activity)and the possibility of simultaneous removal of high-strength organics and nitrogen compounds in UASB(Upflow Anaerobic Sludge Blanket) - PBR(Packed Bed Reactor) process. The results showed that UASB reactors were efficient to remove phenol and phenol + glucose from synthetic wastewater. At phenol conc, of 600 mg/L and SCOD conc. of 2100 mg/L in UASB reactor(with only phenol as substrate), the removal efficiencies of phenol and SCOD were over 99% and 93% respectively, under MLVSS of 20 g. The activity of microorganism was $0.112g\;phenol/g\;VSS{\cdot}d$, $0.351g\;SCOD/g\;VSS{\cdot}d$. The gas production rate was $0.115L/g\;VSS{\cdot}d$ and $CH_4$ content in gas was about 70%. At phenol conc. of 760 mg/L and SCOD conc. of 4300 mg/L in UASB reactor( with phenol + glucose as substrates), the removal efficiencies of phenol and of SCOD were over 99% and 90% respectively, under MLVSS of 20 g. The activity of microoganism was $0.135g\;phenol/g\;VSS{\cdot}d$, $0.696g\;SCOD/g\;VSS{\cdot}d$. The gas production rate was $0.257L/g\;VSS{\cdot}d$ and $CH_4$ content in gas was about 70%. Serum bottle test showed that the activity of granule was inhibited over 1600 mg/L phenol conc, and denitrification and methanogenesis simultaneously took place in UASB granules under co-substrates conditions. PBR reactor packed with cilium type media, was efficient in nitrification. In condition of $0.038kg\;NH_4-N/m^3-media{\cdot}d$. 10~12 mg/L phenol conc. and 200~500 mg/L SCOD conc., nitrification efficiency was over 90% and phenol removal efficiency was over 98%.

  • PDF

Characteristics of NO Oxidation Using NaClO2 (NaClO2를 이용한 NO 산화 특성)

  • Lee, Kiman;Byun, Youngchul;Koh, Dong Jun;Shin, Dong Nam;Kim, Kyoung Tae;Ko, Kyoung Bo;Cho, Moohyun;Namkung, Won;Mok, Young Sun
    • Korean Chemical Engineering Research
    • /
    • v.46 no.5
    • /
    • pp.988-993
    • /
    • 2008
  • The characteristics of NO oxidation using sodium chlorite ($NaClO_2$) powder have been investigated by a flow type packed-bed reactor, where the reaction temperature and the space velocity are varied in the range of $20{\sim}230^{\circ}C$ and $0.4-2.2{\times}10^5hr^{-1}$, respectively, and the simulation gas mixtures are composed of NO (0~200 ppm), $NO_2$ (0-200 ppm), $O_2$ (0~15%) and $H_2O$ (0~15%) within $N_2$ balance. It has been found that the oxidation efficiency of NO depends greatly on the reaction temperature, exhibiting the existence of critical reaction temperature at about $170^{\circ}C$ where the oxidation efficiency of NO is maximized and then abruptly decreased with further increase of reaction temperature, resulting in being negligible over $190^{\circ}C$. Such a behavior in the oxidation efficiency has been originated from the phase transition of $NaClO_2$ at about $170^{\circ}C$ to form $NaClO_3$, and NaCl which are chemically inactive toward the oxidation of NO. The chemical reaction of NO with $NaClO_2$ has been observed to produce $NO_2$, ClNO and $ClNO_2$, whereas that of $NO_2$ only OClO species. Additionally, we have also observed that the introduction of $O_2$ and $H_2O$ has little influence on the oxidation of NO.

Geochemistry of Geothermal Waters in Korea: Environmental Isotope and Hydrochemical Characteristics I. Bugok Area (한반도 지열수의 지화학적 연구: 환경동위원소 및 수문화학적 특성 I. 부곡 지역)

  • Yun, Seong-Taek;Koh, Yong-Kwon;Kim, Chun-Soo;So, Chil-Sup
    • Economic and Environmental Geology
    • /
    • v.31 no.3
    • /
    • pp.185-199
    • /
    • 1998
  • Hydrogeochemical and environmental isotope studies were undertaken for various kinds of water samples collected in 1995-1996 from the Bugok geothermal area. Physicochemical data indicate the occurrence of three distinct groups of natural water: Group I ($Na-S0_4$ type water with high temperatures up to $77^{\circ}C$, occurring from the central part of the geothermal area), Group II (warm $Na-HCO_{3}-SO_{4}$ type water, occurring from peripheral sites), Group III ($Ca-HCO_3$ type water, occurring as surface waters and/or shallow cold groundwaters). The Group I waters are further divided into two SUbtypes: Subgroup Ia and Subgroup lb. The general order of increasing degrees of hydrogeochemical evolution (due to the degrees of water-rock interaction) is: Group III$\rightarrow$Group II$\rightarrow$Group I. The Group II and III waters show smaller degrees of interaction with rocks (largely calcite and Na-plagioclase), whereas the Group I waters record the stronger interaction with plagioclase, K-feldspar, mica, chlorite and pyrite. The concentration and sulfur isotope composition of dissolved sulfate appear as a key parameter to understand the origin and evolution of geothermal waters. The sulfate was derived not only from oxidation of sedimentary pyrites in surrounding rocks (especially for the Subgroup Ib waters) but also from magmatic hydrothermal pyrites occurring in restricted fracture channels which extend down to a deep geothermal reservoir (typically for the Subgroup Ia waters). It is shown that the applicability of alkaliion geothermometer calculations for these waters is hampered by several processes (especially the mixing with Mg-rich near-surface waters) that modify the chemical composition. However, the multi-component mineral/water equilibria calculation and available fluid inclusion data indicate that geothermal waters of the Bugok area reach temperatures around $125^{\circ}C$ at deep geothermal reservoir (possibly a cooling pluton). Environmental isotope data (oxygen-18, deuterium and tritium) indicate the origin of all groups of waters from diverse meteoric waters. The Subgroup Ia waters are typically lower in O-H isotope values and tritium content, indicating their derivation from distinct meteoric waters. Combined with tritium isotope data, the Subgroup Ia waters likely represent the older (at least 45 years old) meteoric waters circuated down to the deep geothermal reservoir and record the lesser degrees of mixing with near-surface waters. We propose a model for the genesis and evolution of sulfate-rich geothermal waters.

  • PDF

Evolution of Hydrothermal Fluids at Daehwa Mo-W Deposit (대화 Mo-W 열수 맥상 광상의 유체 진화 특성)

  • Jo, Jin Hee;Choi, Sang Hoon
    • Economic and Environmental Geology
    • /
    • v.46 no.1
    • /
    • pp.11-19
    • /
    • 2013
  • The Daehwa Mo-W deposit is located within the Gyeonggi massif. Quartz and calcite vein mineralization occurred in the Precambrian gneiss and Jurassic granites. Three main types (Type I: liquid-rich $H_2O$ type, Type II: vapor-rich $H_2O$ type, Type III: $CO_2-H_2O$ type) of fluid inclusions were observed and are classified herein based on their phase relations at room temperature. Within ore shoots, type III fluid inclusions have been classified into four subtypes (type IIIa, IIIb, IIIc and IIId) based on their volume percent of aqueous and carbonaceous ($CO_2$) phase at room temperatures combined with their total homogenization behavior and homogenization behavior of $CO_2$ phase. Homogenization temperatures of primary type I fluid inclusions in the quartz range from $374^{\circ}C$ to $161^{\circ}C$ with salinities between 13.6 and 0.5 equiv. wt.% NaCl. Homogenization temperatures of primary type III fluid inclusions in quartz of main generation, are in the range of $303^{\circ}C$ to $251^{\circ}C$. Clathrate melting temperatures of the type III fluid inclusions were 7.3 to $9.5^{\circ}C$, corresponding to salinities of 5.2 to 1.0 equiv. wt. % NaCl. Melting and homogenization temperatures of $CO_2$ phase of type III fluid inclusions were -57.4 to $-56.6^{\circ}C$ and 29.0 to $30.8^{\circ}C$, respectively. Fluid inclusion data indicate a complex geochemical evolution of hydrothermal fluids. The Daehwa early hydrothermal system is characterized by $H_2O-CO_2$-NaCl fluid at about $400^{\circ}C$. The main mineralization occurred by $CO_2$ immiscibility at temperatures of about 300 to $250^{\circ}C$. At the late base-metal mineralization aqueous fluid formed by mixing with cooler and less saline meteoric groundwater.

The Effect of Soil Moisture Stress on the Growth of Barley and Grain Quality (토양수분 스트레스가 보리생육 및 종실품질에 미치는 영향)

  • Park, Moo-Eon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.28 no.2
    • /
    • pp.165-175
    • /
    • 1995
  • To determine the effect of soil moisture stress on growth of barley and grain quality, a pot experiment was carried out for two barley varieties(Olbori and Chogangbori) by using large plastic pot(52cm in diameter and 55cm in depth) filled with sandy loam soil under rain-controlled open green house. By means of measuring soil water potential with micro tensiometer and gypsum block installed at 10cm in soil depth, soil moisture was controlled by sub-irrigation at several irigation points such as -0.05bar, -0.2bar, -0.5bar, -1.0bar, -5.0bar and -10.0bar in soil water potential. The lower soil water potential was controlled, the shorter length of stem and internode became, and the more narrow stem diameter was. Leaf area was significantly decreased when soil water potential was controlled lower than -0.5bar, although chlorophyll content of flag and first leaves was not changed so much. Weight of grain and ear was significantly decreased when soil water potential was lower than -5.0bar and the highest grain yield was obtaind in a plot where soil water potential was controlled at -0.2bar. However, the most efficient water use of Olbori and Chogangbori was obtained at -0.5bar and -1.0bar in water potentials, respectively. Crude protain content, maximum viscosity, consistency and ${\beta}$-glucan content of barley flour increased as soil water potential significantly decreased, especially below -5.0bar, but gelatination temperature decreased as soil water potential decreased.

  • PDF